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Unit — I — introduction to signal processing

UNIT —I:
Introduction and signal processing

Introduction to analog and digital control systems — Advantages of digital systems — Typical
examples — Signals and processing — Sample and hold devices — Sampling theorem and data
reconstruction — Frequency domain characteristics of zero order hold.

Unit Objectives:
After reading this Unit, you should be able to understand:

» To understand the concepts of digital control systems and assemble various components
associated with it. Advantages compared to the analog type.

Unit Outcomes:

» The students learn the advantages of discrete time control systems and the “know how” of
various associated accessories.

FUNDAMENTALS OF DIGITAL CONTROL SYSTEMS

The analysis of linear control system is based on the fact that the signals at various points
in the system are continuous with respect to time. However, in some applications it is convenient
to use any one or more control signals at discrete time intervals of time, for example in some
industrial process control applications the signal is available only in sampled data form as a
sequence of pulses. The control system using one or more signals at discrete time intervals are
known as sampled data or digital or discrete time control systems. Digital controllers are used for
achieving optimal performance-for example, in the form of maximum productivity, maximum
profit, minimum cost or minimum energy use.

Generally, the controllers are used in control system to modify the error signal for better
control action. The controllers are classified into two types
1. Analog controllers
2. Digital controllers
Analog controllers:

» These are constructed using analog elements and their i/p and o/p are analog signals, which are
continuous function of time.



» Complex, costlier and once fabricated, it is difficult to alter the controllers.
Digital controllers:
» These are constructed using non-programmable devices, microprocessor based systems or
computer based systems.
» These are used complex and time shared control functions
» Simple, versatile, programmable, fast acting and less costly.
> It is easy to alter the control functions by modifying the program instructions.
CONTINUOUS TIME VERSUS DISCRETE TIME CONTROL SYSTEMS
If all the system variables of a control system are functions of time, it is termed as a
continuous time control system
Ex: The speed control of a d.c motor with tacho-generator feedback.
If one or more system variables of control system are known at a certain discrete time, it is

timed as a discrete time control system.
Ex: The microprocessor or computer based system.

The i/p and o/p signals of discrete time systems are digital or discrete, but the i/p and o/p
signals of continuous time systems are analog or continuous time signals. Continuous time
systems, whose signals are continuous in time, may be described by differential equations where
as in discrete time systems the signals are digital signal or sampled data signals may be described
by difference equations.

BLOCK-DIAGRAM OF A DIGITAL CONTROL SYSTEM

A control system which uses a digital computer as a controller or compensator is known
as digital control system. The advantages of using a digital computer for compensation include:
accuracy, reliability, economy and most importantly, flexibility.

A block diagram of a digital control system is shown in the fig.(2.1). The basic elements of
the system are shown by the blocks. The controller operation is controlled by clock. The input and
output signal in a digital computer will be will be digital signal, but the error signal (input to the
controller) to be modified by the controller and the control signal (output of the controller) to drive
the plant are analog in nature. Hence a sample and hold circuit and an analog to digital converter
(ADC) are provided at the digital computer input. A digital to analog converter (DAC) and a hold

circuit are provided at the digital computer output.
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Fig.(2.1): Block-diagram of a digital control system

The sampler (S/H circuit) converts the continuous time error signal into a sequence of
pulses and ADC produces binary code (binary number) of each sample. These codes are input data
to the digital computer which process the binary code by means of an algorithm and produces
another stream of binary codes as output. The DAC and hold circuit converts the output binary
code to continuous time signal (analog signal), called control signal is fed to the plant, either
directly or through an actuator to drive the plant (or to control its dynamics).

The operation that transforms continuous time signals into discrete-time data is called
sampling or Discretization or encoding. The inverse operation, the operation that transform
discrete time data into a continuous time signal is called data hold or decoding; it amounts to a
reconstruction of a continuous time signal from the sequence of discrete time data. The function

of each block in the block diagram is given below

Lecture-2

Sample and hold circuit: Sample and hold circuit is a general term used for sample and hold
amplifier. It describes a circuit that receives an analog input signal and holds this signal at a
constant value for a specified period of time. Usually the signal is electrical, but other forms are

possible such as optical and mechanical.

Analog to digital converter (ADC): An analog to digital converter, also called an encoder, is a
device that converts an analog signal into a digital signal, usually a numerically coded signal. Such
a converter is needed as an interface between an analog component and a digital component. A
sample and hold circuit is often an integral part of a commercially available A/D converter.

The operation of A/D conversion can be explained by the following block diagrams. The



AJD conversion operation is carried out in three stages: sample and hold, quantization and encoding.
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Fig.(2.2): A/D Conversion

Digital to analog converter (DAC): A digital to analog converter, also called as a decoder, is a
device that converts a digital signal into an analog signal. Such a converter is needed as an
interface between a digital component and an analog component.

The operation of D/A conversion can be explained by the following block diagrams. Two
stages are involved in the D/A conversion process: decoding and holding.

Digital E| D/A 5 Analog
Output [nput

Digital Decoder N Analog
Output [nput

Fig.(2.3): D/A Conversion

Plant or process:A plant is any physical object to be controlled, such as a furnace, a chemical
reactor and a set of mechanical parts functioning together to perform a particular operation,
such as a servo system or a space craft.
A process is generally defined as a progressive operation or development marked by a

series of gradual changes that succeed one another in a relatively fixed way and lead towards a
particular result or end.
Transducer: A transducer is a device that converts an input signal into an output signal of
another form, such as a device that converts a pressure signal into a voltage output. The output
signal in general, depends on past history of the input. Transducers may be classified as analog
transducers and sampled-data transducers or digital transducers.
ADVANTAGES & DISADVANTAGES OF DIGITAL CONTROL SYSTEM
Advantages of Digital Control System:

» The advantages of digital control system are listed below:

» Digital components are less susceptible to ageing and environmental variations.

» They are less sensitive to noise and disturbance.
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Digital processors are more compact and light weight.

They are highly accurate, fast and flexible and more reliable.

They are growing cheaper in cost.

Provide high sensitivity to parameter variations.

Allow more flexibility in programming without an alternation in hardware.

Digital coded signals can be stored, transmitted, retransmitted, detected, analyzed or
processed as desired.

They are more reliable.

Disadvantages of Digital Control System:

Some of the disadvantages of digital control systems are as follows:

>

Conversion of analog signals into discrete time signals and reconstruction introduces
noise and errors in the signal.

Limitations on computing speed and signal resolution.

Time delays caused in the control loops due to the limitation on computing speed.
System instability as limit cycles in the closed loop due the finite word length of the

processor.

Application of Digital Control System:

Telecommunications

» Multiplexing
» Compression

» Echo control

Audio Processing

» Music
» Speech generation

» Speech recognition

Echo Location

» Radar
> Sonar

» Reflection seismology

Image Processing



» Medical
» Space

» Commercial Imaging Products

EXAMPLES OF DIGITAL CONTROL SYSTEMS

Open-Loop Control System (No feedback)
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Feedback

Feedback is a key tool that can be used to modify the behavior of a system. This behavior
altering effect of feedback is a key mechanism that control engineers exploit deliberately to
achieve the objective of acting on a system to ensure that the desired performance specifications
are achieved.

Closed-Loop Control System (with feedback)
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Temperature Control System ( Heater or Air Condition ):
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(@) Automobile steering control system.

(b) The driver uses the difference between the actual and the desired direction of travel to
generate a controlled adjustment of the steering wheel.

(c) Typical direction-of-travel response

A three axis control system for inspecting individual semi conductor wafers with a highly

sensitive camera.



Automobile steering control of a Car

SAMPLING PROCESS

Sampling is the conversion of continuous time signal into a discrete time signal obtained by
taking samples of continuous time signal at discrete time instants. A sampling process is used
whenever a control system involves a digital controller, since a sampling operation and quantization
are necessary to enter data into such a controller. Fig.(2.22) shows a switch being used as a sampler.
The input to the switch is a continuous time signal denoted by f(t) as shown in fig.2.22(b). The
switch is closed for a short duration of time say p, and then remains open for some duration of time.
This operation is repeated with ‘T’ called sampling period or sampling interval. The reciprocal of T
i.e.Fs =2/T is called sampling rate or sampling frequency. The switch output appears only for the
closing duration (p) of switch. The signal f(t) is thus sampled at regular intervals of time as shown in
fig.2.22(c).The sampled signal is denoted as f * (t) or f(kT) meaning that f * (t) is obtained after

sampling the input signal f(t) at regular intervals of time.
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Fig.(2.22): Sampling of an analog signal

A practical sampler acts like a switch closing every T seconds for a short duration of p

seconds. Therefore, sampled signal can represented as follows:
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Where u(t) is a unit step function.

The output of an ideal sampler is given bv

F@=3 KDt kD —(2.14)
218
Applving Laplace transform to the sampled signal (above equation), we have
F()=3 ftne & —(2.15)
& -
Welknow from signals and systems classes that therelation between z and Laplace transforms is
given by
&= il
== -Llll Z
T
Fis-limn_F@) - ¥ f&nz -+ —(2.16)
T . .

Where F(z)= Z-transform of f (t)=Z{r (t)}

=Laplace transform of [ (f)

-

1

TYPES OF SAMPLING OPERATIONS

A sampling operation is the process of transforming a continuous time signal into discrete time
signal. The different types of sampling operations are:
» Periodic sampling: In this case, the sampling instants are equally spaced or ts = kT
(k=0,2,2.......... ). It is the most conventional type of sampling operation.
» Multiple order sampling: The difference between two consecutive sampling instants is

repeated periodically. (or) A particular sampling pattern (t ) is repeated periodically i.e.

(te+2-tx ) is constant for all k.
» Multiple rate sampling: In this sampling two simultaneous sampling operations with
different time periods carried out on the signal to produce the sampled output. Thus, a digital control
system may have different sampling periods in different feedback paths or may have multiple

sampling rates



» Random sampling: In this case, the sampling instants are random or tk is a random

variable.

HOLD DEVICE
The function of hold device is to convert sampled signal into continuous signal. The
values of continuous time signal in between the sampling instants are calculated by
extrapolation. The sampled signal provided by the sampling process is weighted impulse train of

x*(t) which is being the input signal to the system transfer function. The system output is also an

impulse train, the envelop of which gives the output, x*(t) or xX(KT) at the sampling instants
only as shown in fig.(2.23).The original signal is reconstructed from the sampled signal by using
hold circuit.

x(1) x(kT)

(a (b)
Fig.(2.23): Sampled data control system- i/p and o/p
The hold circuit brings smoothness in the sampled output. At the sampling instants the
hold signal and the original signal have the same value. The use of the hold circuit enables to
hold the signal between two consecutive sampling instants at the preceded value till the next
sampling instant is reached.

SAMPLING AND HOLDING PROCESS
The basic concept of the sample and hold circuit is shown in figure

Digital word
Analog input ~ FET _\ I (n-bit)
signal : 3 > ADC —Ly/
+
C
- Voltage
_l—l__ T follower
Sample and hold P4
voltage

Fig.(2.24): Sample and hold circuit S/H



The sample and hold is connected to the input of ADC. When the electronic switch (FET
transistor) is closed the capacitor voltage will track the input voltage. T some time, when a
conversion of the input signal is desired, the electronic switch is opened, isolating the capacitor
from the input signal. Thus, the capacitor will hold (be charged) to the voltage when the switch
was closed. The voltage follower allows this voltage to be impressed upon the ADC input, but
the capacitor does not discharge because of very high input impedance of the follower. The start
convert is then is then issued, and the conversion proceeds with the input voltage remaining
constant from the capacitor. When the conversion is complete the electronic switch is reclosed to
capture a new sample and the above sequence is repeated.

Sampling Theorem:

The Sampling Theorem states that “a signal can be exactly reproduced if it is sampled at
frequency f, where f is greater than twice the maximum frequency in the signal.”

The signals that are used in the real world such as our voices, electrical signals, noise
signals etc., are called "analog™" signals. To process these signals in computers, we need to
convert the signals into "digital” form. An analog signal is continuous in both time and
amplitude; where as a digital signal is discrete in both time and amplitude. To convert a signal
from continuous time to discrete time, a process called sampling is used. The value of the signal
is measured at certain intervals in time and the measurement referred to a sample.

When the continuous analog signal is sampled at a frequency f, the resulting discrete
signal has more frequency components than the analog signal. To be precise, the frequency
components of the analog signal are repeated at the sample rate, i.e., in the discrete frequency
response they are seen at their original position, and are also seen centered around =+ f,and

around +2f and soon.

If the signal contains high frequency components, we need to sample it at a higher rate to
avoid losing information in the signal. In general, to preserve the full information in the signal, it
IS necessary to sample at twice the maximum frequency of the signal. This is known as the
Nyquist rate.

Aliasing Effect:

When the signal is converted back into a continuous time signal, it will exhibit a
phenomenon called aliasing. Aliasing is the presence of unwanted components in the
reconstructed signal. These components were not present when the original signal was sampled.
In addition to this some of the frequencies in the original signal may be lost in the reconstructed

a



signal.

Aliasing occurs because signal frequencies can overlap if the sampling frequency is too low.
Frequencies "fold" around half the sampling frequency. So this frequency is often referred to as
the folding frequency.Sometimes the highest frequency components of a signal are simply noise,
or do not contain useful information. To prevent aliasing of these frequencies, we can filter out
these components before sampling the signal. Because we are filtering out high frequency
components and letting lower frequency components through, this is known as low-pass filtering
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ZERO ORDER HOLD (ZOH)

The hold circuit holds the o/p signal at a fixed level between two consecutive sampling
instants such that the slope of the hold circuit o/p signal is zero, in other words, hold signal is
zeroith derivative of an impulse signal. Such a hold device is called zero order hold (ZOH). It is

also known as box-car generator.

x(t) x(kT) hit)
t kT t
/ Zero-order
& hold
x(t) Sampler x\kT) hit)

Fig.(2.25)



Transfer Function of ZOH:

Unit impulse
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(a) Unit impulse ip to ZOH (b) Impulse response of ZOH
Fig.(2.26)
In Fig.(2.25) shows an unit impulse i/p given to a ZOH circuit, which holds the i/p signal
for a duration T and therefore, the o/p appears to be a unit step function till duration T. As the o/p
of ZOH is a unit step function appearing up to time T, the same can be written as
h(t)=u(t)-u(t-T)
Taking Laplace transforms on both sides

L[h (O] =L[u (©]-L[u (t-T)]

H(s):l—le‘ST
s s

H(s)=§(1—e-“)

As the input to ZOH is & (t) i.e. unit impulse function, the Laplace transform of the input is
L[J (t)]=2
.. The transfer function of ZOH is given by

~sT ~sT

G,. (s) = Lloutput of Z45p71 1—e 1—e
Ho Llinput of ZOH1 s 5

1
= Gy () =1 _ex)
&



Frequency Response Characteristics:

The transfer function of ZOH can be given by

1 x
G, (5) :;(l—e Ty —(2.19)
To get sinusoidal transfer function, put s=
G (Jr) = _L(l — a7y — (2.20)
Je
We know that & T/2_gT'2 _1 —(2.21)
From eqns.(2.26) and (2.27)
L A T T
3 T e
Cyoie) = e @ _ e
S
— JerT
g 2 JoeT — jieed”
=2 [e? —e % ]
Jar
— Jurl” j& JE
=g 2 :=<isin£ [sme= e ]
£ 2 2
m% T
=T ot xa * —(2.22)
2
. 27
We know that sampling frequency, @, = _;
T = 2T
i,
L. 2r .
On substituting T = —— | in eqn.(2.28), we get
a,
) . mfr_?} i
) Ix i o
Golje) = o m" % e —(2.23)
i,
.
2r Sm(:}
Magnitude of Gy, (j@) = |Gy, (jo)| = —= : —(2.249)
o, 1@
£,

gy

Phase angle of Gy (je) = £ Gy (Jen) = —

—(2.25)

[

The frequency response characteristic consists of magnitude response and phase response
characteristics, which can be obtained from the eqgns. (2.24) and (2.25) respectively. The
following fig. (2.27) shows the frequency response curve of ZOH device. From the frequency

response curve we can conclude that ZOH device has low-pass filtering
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Fig.(2.27): Frequency response of ZOH

Unit — 11

Z-Transformations

Z-Transforms — Theorems — Finding inverse z—transforms — Formulation of difference equations
and solving — Block diagram representation — Pulse transfer functions and finding open loop and
closed loop responses

Unit Objectives:
After reading this Unit, you should be able to understand:

» The theory of z—transformations and application for the mathematical analysis of digital control
systems

Unit Outcomes:

» The learner understands z-transformations and their role in the mathematical analysis of
different systems (like Laplace transforms in analog systems).

A mathematical tool commonly used for the analysis and synthesis of the discrete time
systems is the z-transform. The role of the z-transform in discrete time systems is similar to that
of the Laplace transform in continuous time systems. The z-transform provides a method for the
analysis of the discrete time systems in the frequency domain than its time domain analysis.

In a linear discrete time control system, a linear difference equation characterizes the



dynamics of the system. To determine the system’s response to a given input, such a difference
equation must be solved. With the z-transform method, the solution’s to the linear difference
equation become algebraic in nature.
3.2. THE Z-TRANSFORM

The z-transform method is an operational method that is very powerful when working
with discrete time systems. For a given sequence values of f(kT), its z-transform is defined by

F(z) and is given by
F(z) ZZ[f(kD]Zé F*D:* —(3.1)

Where ‘7z’ is a complex variable.

The sequence of the above equation is considered to be two sided and the transform is
called two-sided z-transform, since the time index k is defined for both positive and negative
values. If the sequence f(kT) is one sided sequence [i.e. f(KT) is defined only for the positive
values of k] than the z-transform is called one sided z-transform.

The one sided z-transform of the f(kT) is defined as

F(2) =ZLf (kD)) = Xf (kD)z —(32)

k=0

3.3. Z-TRANSFORMS OF SOME STANDARD FUNCTIONS

(i) Unit step function: Consider the unit step function

1, 120
t = )
71 {O._ r<0

F(z)=Z[1F é}u *

-
-

1.e. if f(t)=1, then F(z)=

-



(ii) Unit ramp function: Consider the unit ramp function

it = £, t=0
0, r=0

Putt=kT.k=0.1.2..........

Flz]=Z[kT]= i(ﬂj F=T ikz"‘
k=0

k0
=T[z +2272 4327 4]
We know that
F@=ZF 142 422 4. E 21
ZFo—

Differentiating both sides w.r.t ‘z’

—z 22 3 (Z+])_22 - ! 5
(z-1) (z=1)
=z 22 32 = z 3
(z-1)
From eqns.(3.3) and (3.4), we have
z zT
F(z) =Tx =
2 [(2—1)2] (z—1)*
zT

1.e., if fkT )=kT . then F(z) _(F:T)Z

(iii) Exponential function: Consider the exponential function

Ltz 0
I =4°
0 t=0

>

Putt=kT.k=0.1.2..........
FkT) =€ k=0,1.2........

- (3.3)

—(3.4)
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1e..if f()=e “then F(=F

or
—
z_E.:il'

Note: Sum of the infinte series, 1++7r" + 7 + 7% + =

(iv) Polvnomial function, a' : Let us obtain the z-transform of f{t) as defined by

_I.r::'._ t=0
Eﬂr} t<0
Putt=kT.k=0.1.2..........
fkD)=a"
F(z)=2Z[a"] _Ya"z*
k=0
=1+a’ z'+a¥z ' sa" Vs
=1+(ﬂrf l]]+(arz 152 +
_ 1 oz
T _?_ T
l_ﬂ' z1 -4

-
&

1e 1if f(f)=a’, then F(z)=

z

Noting that

e =cos t jsin
i W+ ot
e ' =coswt - j sinet

we have,

Put t=kT, k=0,1,2.....
f(KT) =sinakT for k=0,1,2.....



1 i ity —
F(z) =Z[sin at] = Z[2_ (e b e-lo =" z B z_m 1
J

2] z— 0T -z
_z z-e —z+e™ -z 2jsinal
2j 22’ v e”? 41 i 2 —2zc0s0T +1
zsingf

22 —2zcos®r +1
zsinal

22 —2z7cos@r t1

Iff (t) =sinat, then F(z) =

(i) Cosine function: consider the cosine function

cosgpt, t=0
f(t)={
Or t<(\

Put t=kT, k=0,1,2.....
f(KT) =cosekT , k=0,1,2,3.....

@ —jet 1
it te Z V4
X(z) =Z[coswt] =Z =—[ — 4 —]
2 27— 5 "
z oz elo |, g 722 gid i

=_I

277 727 1e ™) 11 2 22-2zc0saT +1

Z(z —cosal )
-2 —2zcos@r +1

Z(z —cosal )

-2 —2zcos@T +1

i.e. if f(t) =cosat, then F(z) =



(iii) f(k) = k°, P being a positive integer

= 2. o Pl g ) (35
z (3.3)
Also by definihon

kP YEP —(3.6)

k=0

Differentiating of eqn.(3.6) with respect to "z’
L "= S e —G.7)
Z k=0
From eqns. (3.5) and (3.7)
d
Z[k"] = - Z {Z[E"' 1} —((3.8)

This gives arecurrence formula.

Inverse Z-transforms

Single sided Laplace transform and its inverse make a unique pair, i.e., if F(s) is the Laplace
transform of f(t), then f(t) is the inverse Laplace transform of F(s). But the same is not true for Z-
transform. Say f(t) is the continuous time function whose Z-transform is F(z). Then the inverse
transform is not necessarily equal to f(t), rather it is equal to f(kT) which is equal to f(t) only at
the sampling instants. Once f(t) is sampled by an the ideal sampler, the information between the
sampling instants is totally lost and we cannot recover actual f(t) from F(z).

= f(kT) = Z '[F(z)]

The transform can be obtained by using
Partial fraction expansion
Power series

Inverse formula.

The Inverse Z-transform formula is given as:



1

f(kT):E r

fr{z)zk_ldk

2.4 Other Z-transform properties

Partial differentiation theorem:

z| s o)) = 5P G0

Real convolution theorem:

If f1(t) and f2(t) have z-transforms F1(z) and F2(z) and fi(t) = 0 = fa(t) for t <0, then

Fi(z)Fy(z) = Z [Z fr(nT) f2(kT — nT)

n=0

Complex convolution:

ZU0(0) = 5 f T D

z
o< |é < u
03
I" : circle / closed path in z-plane which lie in the region
g1 . Fl(g)
: radius of convergence of
a FE(‘S)

: radius of convergence of
» 2.5 Limitation of Z-transform method

Ideal sampler assumption
= z-transform represents the function only at sampling instants.

Non uniqueness of z-transform.



wS
Accuracy depends on the magnitude of the sampling frequency relative to the highest

frequency component contained in the function f(t).

A good approximation of f(t) can only be interpolated from f(kT), the inverse z-transform ofF(z),
by connecting f(kT) with a smooth curve.

» Application of Z-transform in solving Difference Equation

One of the most important applications of Z-transform is in the solution of linear difference
equations. Let us consider that a discrete time system is described by the following difference
equation.

y(k +2) + 0.5y(k + 1) + 0.06y (k) = —(0.5)**!

The initial conditions are y(0) =0, y(1) = 0.
We have to find the solution y(k) for k > 0.

Taking z-transform on both sides of the above equation:

2Y (2) 4+ 0.52Y(2) +0.06Y (2) = _0'57 ZQF
> — 0.5
0.5z
, Y(z) = —
or, Y(z) (2 — 0.5)(2% + 0.52 + 0.06)
0.5z

(2 —0.5)(z +0.2)(z+0.3)

Using partial fraction expansion:

Y(z) = 0.8937z N 7.143= 6.25z
z—0.5 z4+02 =z4+03

y(k) = —0.893(0.5)% + 7.143(—0.2)F — 6.25(—0.3)"
Taking Inverse Laplace:

To emphasize the fact that y(k) = 0 for k < 0, it is a common practice to write the solution as:
y(k) = —0.893(0.5)%u, (k) + 7.143(—0.2)u, (k) — 6.25(—0.3) u.(k)

where is the unit step sequence.



Example 2:
Find the solution of
y(k +2) = 3y(k+1) + 2y(k) =r(k)

where r(k) = 3%; y(0) = 0 and y(1) = 1.
Solution:

The given equation can be written as

y(k +2) =3y(k+1) — 2y(k) + r(k)

Taking z-transform
z2Y(z) — 22v(0) — z¥(1) = 3(z¥(2z) — z¥(0)) — 2Y(2) + R(z2)

z2Y(z) = z+ 3zY(z) — 2Y(2) + R(2)

Z+ R(2)
z2.—372+72
_ Z+R(2)

T (z=1)(z-2)

Y(z)=

z

P
{(z-3)

T (z-1D(z-2)

. z(z—3)+z
C(z-1)(z—2)(z—-3)

3 z(z—3+1)
S (z2-D(z-2)(z-3)
Y(z) 1

z (z—1)(z—3)

Pluse Transfer Function

Transfer function of an LTI (Linear Time Invariant) continuous time system is defined as



C(s)

“) = R(s)

where R(s) and C(s) are Laplace transforms of input r(t) and output c(t). We assume that initial
condition are zero.

Pulse transfer function relates Z-transform of the output at the sampling instants to the Z-
transform of the sampled input.

When the same system is subject to a sampled data or digital signal r*(t), the corresponding
block diagram is given in Figure 1 .

r(t) X (1) o ot

R(s) R*(s) C(s)

Figure 1: Block diagram of a system subject to a sampled input

The output of the system is C(s) = G(s)R*(s). The transfer function of the above system is
difficult to manipulates because it contains a mixture of analog and digital components. Thus, for
ease of manipulation, it is desirable to express the system characteristics by a transfer function
that relates r*(t) to c*(t), a fictitious sampler output, as shown in Figure 1.

One can then write:

@) = i c(kT)e_kTs

k=0
Since c(KT) is periodic,
C*(s) 1 ¢ _
=7 Z C'(s + jnw,)

n=—0oc

with ¢(0) =0

The detailed derivation of the above expression is omitted. Similarly,



R*(s) :% Y R(s+ jnw,)

n=—0k

Again, 1 &
C*(s) = = Z C(s + jnw,)

o0

E R*(s+ jnw.)G(s + jnw,)

If we define

G*(s) :% Y G(s+ jnw,)

n—=—00

C*(s) = R*(s)G*(s)
, then .
C"(s)
R*(s)

G*(s) =

is known as pulse transfer function. Sometimes it is also referred to as the starred transfer
function.

If we now substitute z = e in the previous expression, we will directly get the z-transfer
functionG(z) as
C(z)
G(2) = R(z)

G(2) can also be defined as



o

G(z) = g(kT)z"*

k=0

where g(kT) denotes the sequence of the impulse response g(t) of the system of transfer
functionG(s). The sequence g(kT), k=0, 1, 2,...,, is also known as impulse sequence.

Overall Conclusion

1. Pulse transfer function or Z transfer function characterizes the discrete data system only at
sampling instants. The output information between the sampling instants is lost.

2. Since the input of discrete data system is described by output of the sampler, for all practical
purposes, the samplers can be simply ignored and the input can be regarded as r*(t).

~ C(z)
“B) = Re)
Alternate way to arrive at :
C*(t) - g* (f) when #*(#) is an impulse Function
— Z g(kT)8(t — kT)
k=0
When the input is r*(t),
e(t) =r(0)g(t) + r(T)g(t —T) + ...
= c(kT) =r(0)g(kT) + r(T)g((k — 1)T) +
k
= ¢(kT) => " r(nT)g(kT — nT)
n=>0
o0 k

= C(z2) = E ET(nT)g(kT— nT)z"*

k=—mo n=0

Using real convolution theorem

C(z) = R(2)G(=)



C(2)

= G(z) = ")

Pulse transfer of discrete data systems with cascaded elements

Care must be taken when the discrete data system has cascaded elements. Following two cases
will be considered here.

1. Cascaded elements are separated by a sampler
2. Cascaded elements are not separated by a sampler

The block diagram for the first case is shown in Figure 2.

_______ &)
| C*(s)
r(t) r(t : d* (t L et
URE Ly PN i C 2] P I O
R(s)  R(s) D(s) D*(s) C(s)

Figure 2: Discrete data system with cascaded elements, separated by a sampler

G (7o
The input-output relations of the two systems and are described by

Diz) =G (z)R(z)
and

Clz) = Gy(z)D(z)

Thus the input-output relation of the overall system is

C(z) = G1(z)Ga(z)R( z)

We can therefore conclude that the z-transfer function of two linear system separated by a
sampler are the products of the individual z-transfer functions.

Figure 3 shows the block diagram for the second case.

IS N
i_ C"f_s]
) g Guf) d(t) Ga(s) ety
R(s) R*(s) A TS | B C(s)
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Figure 3: Discrete data system with cascaded elements, not separated by a sampler

C(s)
The continuous output can be written as

C(s) = G1(s)Ga(s) R (s)

The output of the fictitious sampler is

C(z) = Z[G1(s)Ga(s)] B(z)

G]_ (5:] Gz [: 5 J
z-transform of the product is denoted as

Z [G1(5)Ga(s)] = G1Ga(z) = GaGa(2)

G]_GZEZ) ;‘é GJ_(.XJGE':.Z)
One should note that in general , except for some special cases.
The overall output is thus,

C(z) = G G4(z)R(z)

Pluse transfer function of ZOH

As derived in lecture 4 of module 1, transfer function of zero order hold is

1 —e 1=
Ghﬂ{s) = —
5
— Gha(z) f— 1 — E—T.s
Pulse transfer function VA T




This result is expected because zero order hold simply holds the discrete signal for one sampling
period, thus taking Z-transform of ZOH would revert back its original sampled signal.

A common situation in discrete data system is that a sample and hold (S/H) device precedes a
linear system with transfer function G(s) as shown in Figure 2. We are interested in finding the
transform relation between r*(t) and c*(t).

F-———- — ———— - -
: Co(s)
L& (L) h(t) l o(t)
=—  ZOH - G(s) ' -
R(s) R*(s) H(s) C(s)

Figure 2: Block diagram of a system subject to a sample and hold process
Z-transform of output c(t) is

C(z) = Z |Gho(s)G(s)] R(z)

5

~z [iG(.s]] R(z)
)

G s
(1— z_l)Z [L
s
where is the Z-transfer function of an S/H device and a linear system.

It was mentioned earlier that when sampling frequency reaches infinity, a discrete data system
may be regarded as a continuous data system. However, this does not mean that if the
signal r(t) is sampled by an ideal sampler then r*(t) can be reverted to r(t) by setting the
sampling time T to zero. This simply bunches all the samples together. Rather, if the output of
the sampled signal is passed through a hold device then setting the sampling time T to zero the
original signal r(t) can be recovered. In relation with Figure 2,

%i_ﬂ-"_é H(s) = R(s)



Example
T(t) = e "u,(t) u(t)
Consider that the input is , where Is the unit step function.
1
= R(s) =
5+a

Laplace transform of sampled signal r*(t) is
R'(s) = Ta _ —aT

Laplace transform of the output after the ZOH is

H(s) = Gro(s)R"(s)

=1 E—TE E_:TE

WhenT — 0,
1— E—T.s E_:TE
Iim H(s) = lim
T—0 [: :] T—0 5 els _ g—aT

The limit can be calculated using L' hospital's rule. It says that:

lim f(z) =0/0c0 lim g(z) = 0/00
If == and if =2 , then
lim £ _ i £ )
wag(z) e g(z)
1 E—Ts ET& . E—nT
f(T) = 9(T) = —x,
For the given example, x =T, and
expressions approach zero as T — 0. So,
H(s) = 1(T)

. Both the



which implies that the original signal can be recovered from the output of the sample and hold
device if the sampling period approaches zero.

Pluse Transfer Function of Closed Loop Systems

We know that various advantages of feedback make most of the control systems closed loop in
nature. A simple single loop system with a sampler in the forward path is shown in Figure 1.

R(s) E*(s) C(s)
—*} Gl[-‘.f]
r(t) ] e*(t) eft)

H(s)

Figure 1: Block diagram of a closed loop system with a sampler in the forward path

The objective is to establish the input-output relationship. For the above system, the output of the
sampler is regarded as an input to the system. The input to the sampler is regarded as another
output. Thus the input-output relations can be formulated as

E(s) = R(s) — G(s)H(s)E"*(s) 1)

C(s) = G(s)E*(s) (2)

Taking pulse transform on both sides of (1),

E*(s) = R*(s) — GH"(s)E"(s) (3)

where



GH*(s) = [G(s)H(s)]"

J— o

_j—h 3" Gs+ jrw)H(s + jnw,)

n——0oOC

We can write from equation (3),
E(s)=_R'(s)
1+ GH*(s)
= C(s) =G(s)E"(s)
= G(s)R"(s)
1+GH*(s)

Taking pulse transformation on both sides of (2)

C*(s) =G (s) E*(s)]

GH() = Z[G(s)H()

Now, if we place the sampler in the feedback path, the block diagram will look like the Figure 2.
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C(s)

cft)

H(s) i JL

c*(t)
Figure 2: Block diagram of a closed loop system with a sampler in the feedback path

The corresponding input output relations can be written as:

E(s) = R(s) — H(S)C"(s) (4)

C(s) = G(s)E(s) = G(s)R(s) — G(s)H(s)C"(s) ()

Taking pulse transformation of equations (4) and (5)

E'(s) =R'(s) — H" ( )C*(s)
C*(s) =GR'(s) — GH™(s)C"(s)
o T (8) FG() R(s)
GH*(s) =[G(s)H(s)*

can be written as

We can no longer define the input output transfer function of this system by



C*(s) Clz)
R*(s) R(z) r(t) *(t)
either or . Since the input Is not sampled, the sampled signal does
C(s)
not exist. The continuous-data output can be expressed in terms of input as.

G(s)H(s)

Cls) = CRG) — 5 m ()

GR'(s)

Characteristics Equation

Characteristics equation plays an important role in the study of linear systems. As said earlier,
an n"order LTI discrete data system can be represented by an n order difference equation,

clk+n)+a,1clk+n—1)+a, 2c(k+n—2)+.. 4+ aclk+ 1)+ agc(k)

=b,r(k+m)+b,r(k+m—1)+ ... + byr(k)

where r(k) and c(k) denote input and output sequences respectively

The input output relation can be obtained by taking Z-transformation on both sides, with zero
initial conditions, as

G(z) = C(z)
R(2)

= b z"+b, 1z + .+ by (6)

2"t a, 12" 4 H a1z +ag

The characteristics equation is obtained by equating the denominator of G(z) to 0, as

" ta, 2"+ . H4azta=0

Example

Consider the forward path transfer function as and the feedback transfer



function as 1. If the sampler is placed in the forward path, find out the characteristics equation of
the overall system for a sampling period T = 0.1 sec.

Solution:

C(z) = G(z)
R(z) 1+ GH(z)

Since the feedback transfer function is 1,

G(z) = GH(2) =_ [ 5(5_2;2) ]

2 (1 —E_ET)X
“2(z—1)(z —e?T)

= 0.18=
z2 —1.82z +0.82

C(z) 0.18z
= R(z) =22 — 164z + 082

2 —1.6424082=0
So, the characteristics equation of the system is

Causality and Physical Realizability

In a causal system, the output does not precede the input. In other words, in a causal system, the
output depends only on the past and presents inputs, not on the future ones.

The transfer function of a causal system is physically realizable, i.e., the system can be realized
by using physical elements.

For a causal discrete data system, the power series expansion of its transfer function must not
contain any positive power in z Positive power in z indicates prediction. Therefore, in the transfer
function (6), n must be greater than or equal to m.

m=n — proper transfer function
m<n — strictly proper Transfer function



Unit — 11
State Space analysis and concepts of
controllability and observability

State space analysis and the concepts of Controllability and observability

State Space Representation of discrete time systems — State transition matrix and methods of
evaluation — Discretization of continuous — Time state equations — Concepts of controllability
and observability — Tests (without proof).

Unit Objectives:
After reading this Unit, you should be able to understand:

» To represent the discrete—time systems in state—space model and evaluation of state transition
matrix.

Unit Outcomes:

> Finally, the conventional and state—space methods of design are also introduced.

> INTRODUCTION

The analysis and design of control system are carried out using transfer functions
together with a variety of graphical techniques such as root locus plots and Nyquist plots
based on the input-output relations of the system. They are applicable only to linear time
invariant systems having a single input and single output (SISO). Hence a new approach to
control system analysis and design is evolved, which can be applied to the design of optimal
and adaptive control system, which are mostly time varying and/or non-linear multiple inputs
and multiple outputs(MIMO). This new approach is based on the concept of state, which
includes the initial conditions in the design.

» Advantages of state-space technique:

> It is possible to analyses time-varying or time-invarying linear or non-linear, single or
multiple input-output systems.

» State equations are highly compatible for simulation on analog or digital computer.
» It is possible to optimize the system useful for optimal design.

» State space analysis gives us the information about the internal behavior of the system,



as well as the input and output behavior.
» State-space techniques can be used to find the stability of a negative feed-back system,
when the feed-back signal is other than the output signal.

» Itis possible to include initial conditions in state space technique.
» CONCEPT OF STATE, STATE VARIABLES & STATE VECTOR

State: The state of a dynamic system is the smallest set of variables, called state variables
such that the knowledge of these variables at t = to together with the input for t>to.

Completely determine the behaviour of the system for anytime t> to. Note that in dealing
with linear time invariant systems, we usually choose the reference time to be zero.
State Variables: The state variables of a dynamic system are the smallest set of variables which
determine the state of the dynamic system. If at least n variables x1(k), x2(k),----------- xn(k) are
needed to completely describe the behavior of a dynamic system, then such n variables x1(k),

x2(K),----------- xn(k) are called a set of state variables

The generic structure of a state-space model of a n" order continuous time dynamical system
with m input and p output is given by:

x(t) = Awx(t)+ Bu(t) :State Equation )
y(t) = Cz(t)+ Dul(t) : Output Equation

where, x(t) is the n dimensional state vector, u(t) is the m dimensional input vector, y(t) is
the pdimensional output vector and AeR"*" , B eR"*™ | CeRP*™ D gRP*™

Example
Consider a nth order differential equation
dny dn—ly

—= +a

dt“ F-‘-...-FGHHZE

Define following variables,



Yy — I

d
2 ==
du-—ly -
gkn—l A Iﬂ
Y _ .
g = —Q1Tp—1 — A2Tp—2— ...— QpT] + U

The nth order differential equation may be written in the form of n first order differential
equations as

Ty = Ty
Ty — :%3g
Tp, = —A{Tp—1— A2Tp_9 —...— ApT] + U
or in matrix form as,
x = Ax + Bu
where
[ E:N
0 0 1 = 1 0
A: B:
_O 0 0 . 1_ _1_

¥y=o
The output can be one of states or a combination of many states. Since,

y=[1000 ... O]x

> Correlation between state variable and transfer functions models

The transfer function corresponding to state variable model (1) , when u and y are scalars, is:



Y(s)

(s) = c=C(sI-A)'B+D
B = ) ) @
Q(s)
\s] — Al
|sI — A|
where is the characteristic polynomial of the system.

» Solution of Continuous Time State Equation

The solution of state equation (1) is given as
t

z(t) = etz () -I—/ A7) Bu(r)dr

o

et — ()
where is known as the state transition matrix and x(to) is the initial state of the
system.

» State Variable Analysis of Digital Control Systems

The discrete time systems, as discussed earlier, can be classified in two types.

1. Systems that result from sampling the continuous time system output at discrete instants only,
i.e., sampled data systems.

2. Systems which are inherently discrete where the system states are defined only at discrete time
instants and what happens in between is of no concern to us.

» State Equations of Sampled Data Systems

Let us assume that the following continuous time system is subject to sampling process with an
interval of T.

x(t) = Axz(t)+ Bu(t) :State Equation
y(t) = Cz(t)+ Du(t) : Output Equation

We know that the solution to above state equation is:
t

z(t) = D(t — tg)z(ts) —|—/ ®(t — 7)Bu(T)dr

L]



Since the inputs are constants in between two sampling instants, one can write:

u(T) = u(kT) , KT <7< (k+1)T
for

which implies  that the  following expression is valid  within  the
kKT <7< (k+1)T to = kT
interval if we consider :

z(t) = O(t — kT)=(kT) + f* ®(t — 7)Bu(kT)dr

,/:;qu(t_ T)Bdt ot — KT)

Let us denote by . Then we can write:

z(t) = O(t — kT)x(kT) + 0(t — KT)u(kT)

t=(k+1)T
If ,
z((k + 1)T) = ®(T)x(kT) + 6(T)u(kT) (4)

(k-+1)T
O(T) — AT 0(T) :/kT ®((k+1)T — 7)Bdr
where and
T
E"(T) :/ (I‘»'(T — t’)Bdt’

t =17 —kT E(T) 0

If , we can rewrite as

Equation (4) has a similar form as that of equation (3) if we
oT)=A oT)=B

consider and . Similarly by settingt = kT, one can show that the

output equation also has a similar form as that of the continuous time one.

When T =1,

x(k+1) = ®(1)x(k)+0(1)u(k)

y(k) = Cz(k)+ Du(k)



» State Equations of Inherently Discrete Systems

When a discrete system is composed of all digital signals, the state and output equations can be
described by

x(k+1) = Az(k)+ Bu(k)
y(k) = Cz(k)+ Du(k)

» Discrete Time Approximation of A Continuous Time State Space Model

Let us consider the dynamical system described by the state space model (3). By approximating
the derivative at t = kT using forward difference, we can write:

1

=

= %{m((k +1)T) — x(kT)] = A=z(kT)+ Bu(kT)
and, y(kT) = Cz(kT)+ Du(kT)

;ir(t)ll:” = z((k+1)T) — x(kT)]

Rearranging the above equations,

z((k+1)T) = (I+TA)x(kT)+ TBu(kT)
f,T=1=xk+1) = (I+ A)zx(k)+ Bu(k)
and y(k) = Ca(k)+ Du(k)

We can thus conclude from the discussions so far that the discrete time state variable model of a
system can be described by

x(k+1) = Axz(k)+ Bu(k)

y(k) = Cz(k)+ Du(k)

where A, B are either the descriptions of an all digital system or obtained by sampling the
continuous time process.

» State Space Model to Transfer Function

Consider a discrete state variable model



z(k+1) = Ax(k)+ Bu(k) @)
y(k) = Cz(k)+ Du(k)

Taking the Z-transform on both sides of Eqgn. (1), we get

2X(z) —zwg = AX(z)+ BU(2)
Y(z) = CX(2)+DU(2)

where ’ is the initial state of the system.
= (zf — A)X(z) = zxy + BU(z2)
or, X(z)= (2 —A) tzay+ (2 — A)"'BU(z)

Ip = 0
To find out the transfer function, we assume that the initial conditions are zero, i.e., ,
thus

Y(z) = (C(zf —A)'B+ D) U(z)

Therefore, the transfer function becomes

_Y(z) )

G =16)

—C(2I - A)'B+ D

which has the same form as that of a continuous time system.

» Various Canonical Forms

We have seen that transform domain analysis of a digital control system vyields a transfer
function of the following form.

Y(z) Goz™+ 5zt 4.+ G 3
= : m < T
Ulz) ozt 4 Ha,

G(z) =



Various canonical state variable models can be derived from the above transfer function model.

> Controllable canonical form

Consider the transfer function as given in Eqgn. (3). Without loss of generality, we
assume m — mn. Let

X(z) 1
U(z) 2z +oz"'4... +an

In time domain, the above equation may be written as

Tk+n)+ez(k+n—1)+ ... +a,z(k) = u(k)

Now, the output may be written in terms of as

Y(z) = (.ﬁuz” + Gzt L+ ,ﬁn) X(z)

or in time domain as
y(k) = Goz(k +n) + Biz(k +n— 1)+ ...+ B.z(k)
The block diagram representation of above equations is shown in Figure 1. State variables are
selected as shown in Figure 1.

The state equations are then written as:

ri(k+1) = za(k)
ro(k+1) = z3(k)

Ta(k+1) = —apzi(k) — an_1z9(k) — ... — ayza(k) + u(k)



Output equation can be written as by following the Figure 1.

y(k) = (Bn — anfo)z1(k) + (Ba-1 — an—180)xa(k) + ... + (81 — a15o)xn(k) + Bou(k)

In state space form, we have

x(k+1) = Ax(k)+ Bu(k) )

y(k) = Cx(k)+ Du(k)

y(k)

) R )
O\ O

-';LI i1 -'3’2 'i’n 1 jri

ulk) _h/-\\ . n » L1 — » r= (k)
L :

ik kg [ P ¥y
() Y . )
vy N /

Figure 1: Block Diagram representation of controllable canonical form

where

0 1 0 0 0]
0 0 1 0 0
A= : SR B=V
0 0 0 |
—p —CQp—1 —Qp—2 ... —0Q 1

C= [(Bn —anfo Bn-1 —an-1Bo ... Bi— alﬁﬂ] D = f3

» Observable Canonical Form

Equation (3) may be rewritten as



(zF+oz" e, Y(2) = (Bt + AT 4 B.) U(2)
or, 2" Y (z) — BoU(2)] + 2" e Y (2) — BU(2)] + ... + [0,.Y (2) — B.U(2)] = 0

Y(z) = 5.U(z) — z_l[r:l-]}"(z) — 5U(2)] — ... — 2" e, Y (z) — 5.U(z)]

The corresponding block diagram is shown in Figure 2.

u(k)

:t';;:r - ~ Tn _q-{- y(k)

T
J‘}I
'
A
N

T
'
Y
C“\

oy, Ny . (2%

Figure 2: Block Diagram representation of observable canonical form

Choosing the outputs of the delay blocks as the state variables, we have following state equations

ok +1) = zp_1(k) — aq(zn(k) + Boulk)) + Bru(k)
Tn-1lk+1) = zn-o(k)— as(zn(k) + Foul(k)) + Gou(k)

ri(k+1) = —an(za(k) + Gou(k)) + Brulk)
y(l‘) — In.(k) + ;‘3{]‘11(]{)

This can be rewritten in matrix form (4) with



000 ... 0 —o ] - o
1 0 0 0 —n ﬂlﬁn :ﬂnjuﬁ

A={0 10 ... 0 —aps| =[5 oo
000 ... 1 —a L et

» Duality

In previous two sections we observed that the system matrix A in observable canonical form is
transpose of the system matrix in controllable canonical form. Similarly, control matrix B in
observable canonical form is transpose of output matrix C in controllable canonical form. So also
output matrix C in observable canonical form is transpose of control matrix B in controllable
canonical form.

> Jordan Canonical Form

In Jordan canonical form, the system matrix A represents a diagonal matrix for distinct poles
which basically form the diagonal elements of A.

z=2X, 1=1,2....n
Assume that are the distinct poles of the given transfer function (3).
Then partial fraction expansion of the transfer function yields

)(,) — Bt ‘-’.'31.‘_'"%] -+ ‘.‘-J:'Q,';"ﬁ:3 +...+ Bn
U(z) - r AL R O B AL S S
O o 2 gt I . oo TN )
= Gy+ - ] + 2 . 3,?. (5)
(z—=M)(z—Xa)...(z— Ap)
= B B et
T s TR Rl TR G

A parallel realization of the transfer function (5) is shown in Figure 3.
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(k)
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Figure 3: Block Diagram representation of Jordan canonical form

¥

g1 = (k) .
Ay

1 zgik) | o
Mg

1 =, (k) .

An

2

Considering the outputs of the delay blocks as the state variables, we can construct the state

model in matrix form (4), with

AL
0
0

0

0
A
0

[E%]

0

0
0

A

]

o o

An

C = [?"]_ T2

]

D:.ﬁﬂ

When the matrix A has repeated eigenvalues, it cannot be expressed in a proper diagonal form.
However, it can be expressed in a Jordan canonical form which is nearly a diagonal matrix. Let

us consider that the system has eigenvalues,

Jordan canonical form will be

AL A

1 0
Ay O
0 Az
0 0

Az
and

As

. In that case, A matrix in



1. The diagonal elements of the matrix A are eigenvalues of the same.
2. The elements below the principal diagonal are zero.
3. Some of the elements just above the principal diagonal are one.
4. The matrix can be divided into a number of blocks, called Jordan blocks, along the
diagonal. Each block depends on the multiplicity of the eigenvalue associated with it. For
Z
example, Jordan block associated with a eigenvalue ' of multiplicity 4 can be written as

52 1 0 0
0 2 1 0
A=10 0 2 1
0 0 0 z

Example: Consider the following discrete transfer function.

0.17z 4 0.04

7 —
&)= s 11.70m

Find out the state variable model in 3 different canonical forms.

Solution:

The state variable model in controllable canonical form can directly be derived from the transfer
function, where the A, B, C and D matrices are as follows:

0 1 0
A= [—0.24 1_1}, B = H C =004 017], D=0

The matrices in state model corresponding to observable canonical form are obtained as,

A:[[} —0.24}5 82[0.04] C—10 1], D=0

1 11 0.17)°

To find out the state model in Jordan canonical form, we need to fact expand the transfer
function using partial fraction, as

0.17z +0.04  0.352 N —0.182
22-1124+024 2—-08 =z-03

G(z) =

Thus the A, B, C and D matrices will be:



0.8 0 1
A= [0 0_3}, B:H1 C=[0352 —0.182], D=0

Characteristic Equation, eigenvalues and eigen vectors
For a discrete state space model, the characteristic equation is defined as

2 — Al =0

The roots of the characteristic equation are the eigenvalues of matrix A.

dCt(A) # 0 A]_ Az An

1. If , 1.e., A'is nonsingular and b, are the eigenvalues of A,
11 1
A Az A :

then, , -, will be the eigenvalues of AL,

2. Eigenvalues of Aand AT are same when A is a real matrix.

3. If A'is a real symmetric matrix then all its eigenvalues are real.

nxl V;
The vector  which satisfies the matrix equation

A“Ui — )'l.i'l'i_ (1)

Ay, i=1,2,---,n

where denotes the i" eigenvalue, is called the eigen vector
A;
of A associated with the eigenvalue . If eigenvalues are distinct, they can be solved directly
from equation (2).
Properties of eigen vectors
1. An eigen vector cannot be a null vector.
y my
2. If  is an eigen vector of A then is also an eigen vector of A where mis a scalar.

3. If A has n distinct eigenvalues, then the n eigen vectors are linearly independent.

» Eigen vectors of multiple order eigenvalues



When the matrix A an eigenvalue A of multiplicity 772, a full set of linearly independent may
not exist. The number of linearly independent eigen vectors is equal to the

M — A
degeneracy d of . The degeneracy is defined as
d=1n—r1
AM— A
where 7 is the dimension of A and 7 is the rank of . Furthermore,
l<d<m

»  Similarity Transformation and Diagonalization

Square matrices A and 4 are similar if

AP = PA
or, A = P AP
and, A = PAP™!

The non-singular matrix P is called similarity transformation matrix. It should be noted that
eigenvalues of a square matrix A are not altered by similarity transformation.

> Diagonalization:

If the system matrix A of a state variable model is diagonal then the state dynamics are
decoupled from each other and solving the state equations become much more simpler.

In general, if A has distinct eigenvalues, it can be diagonalized using similarity transformation.
- - - - - - Al] Az! e An - -
Consider a square matrix A which has distinct eigenvalues . It is required to

find a transformation matrix P which will convert A into a diagonal form

A0 .00
A=10 Ay ... O
0 0 An
o ) Uy V2, -« oy Un )
through similarity transformation AP = PA . If are the eigenvectors of
}ll.]_:I }\.2] . )'l.n A'Ui — )I.E:Ti
matrix Acorresponding to eigenvalues , then we know . This

gives



Alvyvg .o vy =[vrvy ooov ] |0 Ay o0 0
0 0 AL
P=[vyvy ... v,
Thus . Consider the following state model.

z(k+1) = Az(k) + Bu(k)

x(k) =z(k)
If P transforms the state vector to through the relation

x(k) = Pz(k),  =(k) =P 'a(k)
or,
then the modified state space model becomes

z(k+1) = P'APz(k) + P~ ' Bu(k)

where P7AP = A,

(¢)
» Computation of

We have seen that to derive the state space model of a sampled data system, we need to know the
D(t) = et

continuous time state transition matrix

» Using Inverse Laplace Transform

x(t) = Ax(t) + Buf(t)

For the system , the state transition matrix e “*can be computed as,

et — .??_l{(sf — A]l_l}

» Using Similarity Transformation

If A is the diagonal representation of the matrix A, then A = PXAP. When a matrix is in diagonal
form, computation of state transition matrix is straight forward:



eMt () 0
M| 0 ert 0
0 0 gint
Given e”!, we can show that
Eflt _ PEJ'L{'P—I
Proof.
At 1 42,2
e = 1+.4t+2—,A 4. ..
1 ¢ [y
= P leMp = P'|I+ At+ _2—,14-’9 +...|P
= I+ P 1APt+ QL‘P“APP‘]APF -
i !
- I+At+2—'A2t2+...
- e.‘\l .
=3 em — Pe/\t})—]

» Using Caley Hamilton Theorem

Every square matrix A satisfies its own characteristic equation. If the characteristic equation is

AN =M —-A =X+ A" '+ +a,=0

then,

AA)=A"+ o A"+ a, I =0

Fx) f(A)

Application: Evaluation of any function and

fN) =ag+a A+ a4+ +a, "+ ~
order



= q(A)A(A) +g(A)
= g(A)
= fo+BiA+---+ Br-1A"! order n —1

.ﬁﬂa.lﬁl:l e 1.’371—1

The solution will give rise to , then

f(A] = .SEII 1 .8144 4+ -+ .Sn—LAn_l

If there are multiple roots (multiplicity = 2), then

Example 1:

f(x) = g(N) (2)

%) d (3)
mx_f{)h') = 3)\1-,5'{}'5)

then compute the state transition matrix using Caley Hamilton Theorem.



A 0 2

AN =|AI-A|=[ 0 A=1 0 |=A-1P*0\-2)=0=X\
=1 @ }=i3
5 )'l.z — 2
(with multiplicity 2)
FA) = eM g(A) = 8o + B1A + B A?
Let and

Then using (2) and (3), we can write

This implies

e = 3o + ,.‘31 —}—'13'_)_ (/\1 = 1)
Bri+26y (A =1)
e = Bo+261+4B (A =2)

~~
m".
Il

Solving the above equations

Gy = €* —2te*, [ = dte' + 268 — 2, [y=e" —e' —te

Then

el = fol + BiA+ RoA®
2et —e2 0 2' — 2e*
0 e 0

9 2
et —et 0 2e*—¢

x(t) = Ax(t) + Bu(t) A= [—11 ﬂ

Example 2 For the system , Where . Compute

eAtusing 3 different techniques.



1441
Solution: Eigenvalues of matrix A are :

Method 1:
=5 =4 i
et = ¥~ (s] — A =21 :
l s—1
| S — 1
—_ -1
i .j - )S -+- |: S 1]
s—1
il _2;—1 (5_1')1“‘] (s Sl_)]+1
(s—1)2+1  (s—1)2+1

| e'cost e€'sint

~ |—e'sint e'cos t
Method 2:

At E(lﬂ'ﬁf 0
_ 0 Eil_ﬂt 1 :I:j
— PeMP~! where . Eigen values are . The
A“Ui — )'L,:'T_'i_
corresponding eigenvectors are found by using equation as follows:
]_ 1 ™ . A
1

Taking , we get So the eigenvector corresponding to is and the
one corresponding to . The transformation matrix is given by

_ _(r1 N R

Now,



6‘4: — PeAzP—l

1 1[0 T —j
j 0w i

[ (13}t (1-3)t 1 —j
_je(lﬂ‘)t —jell=t] 11 5

- e(l+j)t+e(l—j)t —j e+t _ e(l—j)z)
j (et — g1-3)) ell+d)t | o(1-d)t

O it ¥ S R K

2e’ cos t —j(j)€e'2sin t
'(5)(j)2sin ¢ 2¢' cos t

| e'cos t  €'sin t]

—e'sint e‘cos t

r— NS

Method 3:

Caley Hamilton Theorem

The eigenvalues are

e = fo+ Pih
eMt — Bo + BiAa

Solving,

o = 51+ e 4 (1 — )9

B, = % (e(lﬂ')‘ _ e{l—j)*)

Hence,

et = Bol + A1 A

| €'cost e'sint
~ |—e'sint e'cos t



We will now show through an example how to derive discrete state equation from a continuous
one.

Example: Consider the following state model of a continuous time system.

x(t) = [(l) ﬂ x(f)+[(l)] u(t)
y(t) = x(t)

If the system is under a sampling process with period T, derive the discrete state model of the
system.

To derive the discrete state space model, let us first compute the state transition matrix of the
continuous time system using Caley Hamilton Theorem.

A=A — A= =(A=1A=2)=0= X =1, dg=2

0 X-—2
Let f(\) = e

lA—l =%

This implies

Solving the above equations

G =€ —€e" Gy =2 —e*

Then



The discrete input matrix B can be computed as

.
B = (—)(T):/ (T - 1) m '
J()

ST B ! BUAl BTl Ea !
/ ! !(Jf e 1 (JZI e 208 (Jf e i ] ![]] Hf
— 21 ot (v
Jo 0 et 1

The discrete state equation is thus described by

v
—
—

4<

[—
e
3

I

Sl Y 52T _ T L 0%
[CO € E.‘JTC ]X(L‘T) i [0.)6.562’1‘(_ 0«|:30 J] u(kT)

y(kT) = [1 0]x(kT)

When T =1, the state equations become

272 467] ... [1.48
x(k+1) = [(; 7_351 x(k)+[3.1;] u(k)
y(k) = [1 0] x(k)

Solution to Discrete State Equation

In this lecture we would discuss about the solution of discrete state equation, computation of
discrete state transition matrix and state diagram.

Consider the following state model of a discrete time system:

z(k+1) = Az(k) + Bu(k)

where the initial conditions are x(0) and u(0). Putting k = 0 in the above equation, we get

z(1) = A=(0) + Bu(0)



Similarly if we put k=1, we would get

) = Axz(1)+ Bu(1)
) A22(0) + ABu(0) + Bu(1)

—
| SN (N

Putting the expression of (1) = =(

Fork=2,

8

—
..v
I

Ax(2) + Bu(2)
= A’z(0) + A’Bu(0) + ABu(1) + Bu(2)

and so on. If we combine all these equations, we would get the following expression as a general
solution:

k—1
z(k) = A'x(0)+) A*'"'Bu(i)
i=0

As seen in the above expression, x(k) has two parts. One is the contribution due to the initial

statex(0) and the other one is the contribution of  the external
1=0,1,2,--- k-1

input u(i) for . When the input is zero, solution of the homogeneous
x(k+1) = Ax(k)

state equation can be written as

x(k) = Hk::c[:[l)

A = (k)

where is the state transition matrix.

- o(k)
Evaluation of
Similar to the continuous time systems, the state transition matrix of a discrete state model can be evaluated

using the following different techniques.

» Using Inverse Z-transform:

o(k) =2 (= -A)T

» Using Similarity Transformation IfAis the diagonal representation of the matrix A,



then A = Pt AP. When a matrix is in diagonal form, computation of state transition matrix is straight
forward:

200
AF=1[0 Mt ... 0
0 0 ... Ak

Given A*, we can compute AF = PAFP!

» Using Caley Hamilton Theorem

Example Compute A* for the following system using three different techniques and hence
find y(k)fork >0 .

z(k+1) = !—0.21 —1] “’(kHH (=1 :13(0):!
y(k) = wy(k)

Solution: and eigenvalues of A are - 0.3 and - 0.7

Method 1 :



- z+1 1
+2+0.21 22+42+0.21
Ak = -1
—0.21 z
2z +2+0.21 z2=42z+0.21
R By ) 0.75 2.5 2.5
z+0.3 = z+0.7 2+03 = z+0.7
= 7!
—0.525 525 —0.75 1.75
L 2+0. ‘33 + ?i z+0.3 = :+:)T
1.75(— — 0.75(—0.7)* 2.5(—0.3)% — 2.5(—0.7)*
L +0.525(—0.7)% —0.75(—0.3)F 4+ 1.75(—0.7)*
Method 2
k
AF (—0.3) 0
0 (—0.7)F

Ak = PA*P~1 where

Eigen values are-0.3and-0.7. The corresponding eigenvectors are found, by using

1 1
Av: = A\ 0.3 0.7

equation , as and respectively. The transformation matrix is
given by

lel 1}:}13_1:[1.?5 2.5}

—0.3 07 —0.75 =25
Thus,
AF = pAFp!
- [ 1 | (—0.3)"' 0 1.75 25
. _—0.3 —0.7 0 (—().7’)"‘ —0.75 =25
| 1.7.5(—0.3)‘ 0.75(-0. 7)“ 2.5(—0 3)" —2.5(-0 7)"
_—O h25(—0. 3) + 0.525(— 0.7)"‘ —075(—0.3)" -+ 1.75(—0.7)“
Method 3:

Caley Hamilton Theorem

The eigenvalues are - 0.3 and - 0.7.



(—0.3)F = By — 0.35
(=0.7)* = By — 0.78

Solving,

Ll
2.5

o 5(—0.3)* — 0.75(—0.7)*
Gy =

—0:3— 2.5(-00)*

II

Hence,

d(k) = A* = BoI + B1A
[ 1.75(—0.3)F — 0.75(—0.7)F 9.5(—0.3)* — 2.5(—0.7)* ]
h

—0.525(—0.3)% + 0.525(—0.7)F —0.75(—0.3)* + 1.75(—0.7)* .

e solution x(K) is

k—1
z(k) = A*z(0) + Y A7 Bu(i)
i=0
o 175( 03) 07 k +L 4 03 k—1- ~i_ 9%k ( 07)k—1—i (_l)i
N —0.5'25( 0. 3)" + 0.5 o( 07 = —0. 3)16 1= 4 ¥ 7(( 0_7)k-—1-i
I CEC I
Since , We can write
y(k) = —0.525(—0.3)* + 07"+Z (=03 41.75(— 0.7)k—1—i](_1)i

i=

k—1 k-1
= —0.525(=0.3)* +0.525(=0.7)* — 0.75(~0.3)*"1 > "(1/0.3)" + L.75(—0.7)*1 ) "(1/0.7)"
i=0 i=0

Now,



i(1/o.3)*’ =) (3.33) = 1= (B33)° —0.43[1 — (3.33)"]

i=0 1—3.33
k—1 k—1 .
7V = 1N 1-— (143)" . -
;(1/0.;) = ;(1.43) Lo - asy

Putting the above expression in y(k)

y(k) = 0.475(—0.3) — 5.3(—0.7)*F + (—0.3)¥(3.33)* + 5.825(—0.7)F*(1.43)*

Controllability and observability are two important properties of state models which are to be
studied prior to designing a controller.

Controllability deals with the possibility of forcing the system to a particular state by application
of a control input. If a state is uncontrollable then no input will be able to control that state. On
the other hand whether or not the initial states can be observed from the output is determined
using observability property. Thus if a state is not observable then the controller will not be able
to determine its behavior from the system output and hence not be able to use that state to
stabilize the system.

1. Controllability

Before going to any details, we would first formally define controllability. Consider a dynamical
system

z(k+1) = Az(k)+ Bu(k) (1)
y(k) = Cx(k)+ Du(k)

‘qERn?n BE Hn)’m CERPVH DERp\{m
where : : ,

Definition 1 The state equation (1) (or the pair (A,B) ) is said to be completey state controllable

or simply controllable if for any initial state x(0) and any final state x(N), there exists an input
k=0,1,2,--- N

sequence , , which transfers x(0) to x(N) for some finite N.

Otherwise the state equation (1) is uncontrollable.

Definition 2 Complete Output Controllability: The system given in equation (1) is said to be
y(N)
completely output controllable or simply output controllable if any final output can be
z(0)
reached from any initial state by applying an unconstrained input



u(k) k=0,1,2,--- N
sequence : , for some finite . Otherwise (1) is not output
controllable.
1.1 Theorems on controllability
1. The state equation (1) or the pair (A,B)is controllable if and only if

X nm
the controllability matrix

Uo=[B AB A’B ... A"t B

00 has rank n, i.e., full row rank.

X n
[1 2. The state equation (1) is controllable if the controllability grammian matrix
N_]- J"'fr_J. .
H'C _ Z ‘quBT[:‘;l?)T — z fil."'n'—l—a.BBT(‘q.-'\-—L—a:]T
=0 ;=0

D
is nonsingular for any nonzero finite N.

[1 3. If the system has a single input and the state model is in controllable canonical form then
the system is controllable.

(1 4. When A has distinct eigenvalues and in Jordan/Diagonal canonical form the state model is
controllable if and only if all the rows of B are nonzero.

(1 5. When A has multiple order eigenvalues and in Jordan canonical form, then the state model
is controllable if and only if

1 1. each Jordan block corresponds to one distinct eigenvalue and
[ ii. the elements of B that correspond to last row of each Jordan block are not all zero.
Output Controllability: The system in equation (1) is completely output controllable if and

px(n+1)m
only if the output controllability matrix

Uoc = [D CB CAB CA’B ... CA™'B]

P
has rank , i.e., full row rank.



» Controllability to the origin and Reachability

There exist three different definitions of controllability in the literature:

1. Input transfers any state to any state. This definition is adopted in this course.
2. Input transfers any state to zero state. This is called controllability to the origin.

3. Input transfers zero state to any state. This is referred as controllability from the origin or
reachability.

Above three definitions are equivalent for continuous time system. For discrete time systems
definitions (1) and (3) are equivalent but not the second one.

x(k+ 1) = Az(k) + Bul(k) y(k)=Cz(k)

Example: Consider the system : . where
—2 1 1
A= 1 ol B = | and C' = [0 1]
Y(z)
Ulz
Show if the system is controllable. Find the transfer function . Can you see any
connection between controllability and the transfer function?

Solution: The controllability matrix is given by

U=|B AB] = [1 _l]

1 -1
Ul =0=1U
Its determinant has a rank 1 which is less than the order of the matrix, i.e., 2.
Thus the system is not controllable. The transfer function
. . =
vw | TOE) 1 o lz+2 =1 | 1
G(z) =——==Cl(zI — A 'B = [0 1] ) —i—
(2) J(2) ( ) 1‘ [ -1 z+2 1 z+1

Although state model is of order 2, the transfer function has order 1. The eigenvalues of A
)H.]_ == —]_ )"2 == —3

are and . This implies that the transfer function is associated with pole-

zero cancellation for the pole at -3. Since one of the dynamic modes is cancelled, the system

became uncontrollable.



» Observability

Definition 2 The state model (1) (or the pair (A,C)) is said to be observable if any initial

state x(0)can be uniquely determined from the knowldge of output y(k) and input sequence u(k),
k=0,12,--- N

for Y , Where N is some finite time. Otherwise the state model (1) is

unobservable.

» Theorems on observability

np X mn
1. The state model (1) or the pair (A,C) is observable if and only if the observability
matrix
T
CA
Uo= | CA
(_—".‘"1‘“*1
has rank n, i.e., full column rank.
o n
2. The state model (1) is observable if the observability grammian matrix
N-1 N-1 _
Wo = (A)'cTeA = (AN HTcToaN 1
i=0 a=0

is nonsingular for any nonzero finite N.
3. If the state model is in observable canonical form then the system is observable.

4. When A has distinct eigenvalues and in Jordan/Diagonal canonical form, the state model is
observable if and only if none of the columns of C contain zeros.

5. When A has multiple order eigenvalues and in Jordan canonical form, then the state model is
observable if and only if

i. each Jordan block corresponds to one distinct eigenvalue and

ii. the elements of C that correspond to first column of each Jordan block are not all zero.



» Theorem of Duality
The pair (A,B) is controllable if and only if the pair (A",B") is observable.
Exercise: Prove the theorem of duality.

> Loss of controllability or observability due to pole-zero cancellation

We have already seen through an example that a system becomes uncontrollable when one of the
modes is cancelled. Let us take another example.

Example:

The controllability matrix
o]}

implies that the state model is controllable. On the other hand, the observability matrix
-4 2

has a rank 1 which implies that the state model is unobservable. Now, if we take a different set of

_ 71 (k) = y(k) _ _
state variables so that, , then the state variable model will be:

Ti(k+1) = ylk+1)
Ti(k+2) = ylk+2)=—yk)—2y(k+1)+ulk+1)+u(k)

£a(k) = y(k + 1) — u(k)
Lets us take . The new state variable model is:

ik +1) = (k) + u(k)
Zolk +1) = —&, (k) — 20 (k) — u(k)



which implies

The controllability matrix

implies that the state model is uncontrollable. The observability matrix

1o
oo 3

implies that the state model is observable. The system difference equation will result in a tranfer
function which would involve pole-zero cancellation. Whenever there is a pole zero cancellation,
the state space model will be either uncontrollable or unobservable or both.

» Controllability/Observability after sampling

Question: If a continuous time system is undergone a sampling process will its controllability or
observability property be maintained?

The answer to the question depends on the sampling period T and the location of the Eigen
values of A.

. Loss of controllability and/or observability occurs only in presence of oscillatory modes of the
system.

. A sufficient condition for the discrete model with sampling period T to be controllable is that
Re[h; — A =0 [Im[A; — Aj]| # 2om/T m—= 1,23, ...
whenever , for

. The above is also a necessary condition for a single input case.

Note: If a continuous time system is not controllable or observable, then its discrete time
version, with any sampling period, is not controllable or observable.



Unit -1V
Stability Analysis
Mapping between the S—Plane and the Z—Plane — Primary strips and Complementary Strips —

Stability criterion — Modified routh’s stability criterion and jury’s stability test

Unit Objectives:
After reading this Unit, you should be able to understand:
» To examine the stability of the system using different tests. To study the conventional method
of analyzing digital control systems in the w—plane
Unit Outcomes:

»  The learner understands the stability of digital control systems and how to make the unstable
system to stable

» Relationship between s-plane and z-plane

In the analysis and design of continuous time control systems, the pole-zero configuration of the
transfer function in s-plane is often referred. We know that:

. Left half of s-plane = Stable region.

. Right half of s-plane = Unstable region.

For relative stability again the left half is divided into regions where the closed loop transfer
function poles should preferably be located.

Similarly, the poles and zeros of a transfer function in z-domain govern the performance
characteristics of a digital system.

One of the properties of F*(s) is that it has an infinite number of poles, located periodically with
+rmw, Wy

intervals of withm =0, 1, 2,......, in the s-plane where is the sampling frequency in

rad/sec.

If the primary strip is considered, the path, as shown in Figure 1, will be mapped into a unit
circle in the z-plane, centered at the origin.



Figure 1: Primary and complementary strips in s-plane

The mapping is shown in Figure 2.

3 Im

z-plane

RE"__

Figure 2: Mapping of primary strip in z-plane

Since


http://nptel.ac.in/courses/108103008/module2/lec2/1.html#m2:l2:f1a

E{.ﬁ-}jmwK}T — ETEEJEIrm

— T=

where m is an integer, all the complementary strips will also map into the unit circle.
» Mapping guidelines

1. All the points in the left half s-plane correspond to points inside the unit circle in z-plane.
2. All the points in the right half of the s-plane correspond to points outside the unit circle.

3. Points on the jw axis in the s-plane correspond to points on the unit circle |z| - in the z-
plane.
§ = jw
= ETE
=T =

magnitude =1

» Constant damping loci, constant frequency loci and contant damping ration loci
s =0+ jw
»  Constant damping loci: The real part ¢ of a pole, , of a transfer function in
s-domain, determines the damping factor which represents the rate of rise or decay of time
response of the system.

. Large o represents small time constant and thus a faster decay or rise and vice versa.

. The loci in the left half s-plane (vertical line parallel to jw axis as in Figure 2(a)) denote positive
damping since the system is stable

. The loci in the right half s-plane denote negative damping.

. Constant damping loci in the z-plane are concentric circles with the center at z =0, as shown in
Figure 2(b).

. Negative damping loci map to circles with radii >1 and positive damping loci map to circles
with radii <1.
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Figure 2: Constant damping loci in (a) s-plane and (b) z-plane

» Constant frequency loci: These are horizontal lines in s-plane, parallel to the real axis as
shown in Figure 3(a).

Juw

s-plane

\

Fary
0]

unif circle

3 Im =

z-plane

1
I/

Constant

Frequency loci

(a)

Re =

(k)

Figure 3: Constant frequency loci in (a) s-plane and (b) z-plane

Corresponding Z-transform:



When w = constant, it represents a straight line from the origin at an angle of & — wT rad,
measured from positive real axis as shown in Figure 3 (b).

» Constant damping ratio loci: If  denotes the damping ratio:

8= _gw, + jw,/1— €2

— —wtan § + jw
w, .13 — Siﬂ_l r.f
is the natural undamped frequency and . If we take Z-transform

f— ET( —wianF+jw)

= et/ ()

3

Foragiven or ,the locus ins-plane is shown in Figure 4(a).

In z-plane, the corresponding locus will be a logarithmic spiral as shown in Figure 4(b), except
E=0 B=0 €£=1 F=290°
for or and or :
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Figure 4: Constant damping ratio locus in (a) s-plane and (b) z-plane

Stability Analysis of closed loop system in z-plane

Stability is the most important issue in control system design. Before discussing the stability test
let us first introduce the following notions of stability for a linear time invariant (LTI) system.

1. BIBO stability or zero state stbaility
2. Internal stability or zero input stability

Since we have not introduced the concept of state variables yet, as of now, we will limit our
discussion to BIBO stability only.

An initially relaxed (all the initial conditions of the system are zero) LTI system is said to be
BIBO stable if for every bounded input, the output is also bounded.

However, similar to continuous time systems, the stability of the following closed loop system



C(z) G(z)

R(Z) 1+GH(z)

can also be determined from the location of closed loop poles in z-plane which are the roots of
the characteristic equation

1+ GH(z) =0

1. For the system to be stable, the closed loop poles or the roots of the characteristic equation
must lie within the unit circle in z-plane. Otherwise the system would be unstable.

|z| =1
2. If a simple pole lies at , the system becomes marginally stable. Similarly if a pair of
|z| =1
complex conjugate poles lie on the circle, the system is marginally stable. Multiple
poles at the same location on unit circle make the system unstable.

Example 1:

Determine the closed loop stability of the system shown in Figure 1 when K = 1.

G(s)
R(s) + E(s) o E*(s) 3 J 1—e _ 1 C'I:.szlh
- T =1 K " 5 v 5(.5 + l:l "

Figure 1: Example 1

Solution:
G(z) 1—e® 1
— z { s s(s+ 1)}
1 1
— 1-27)2 Lz(s + 1)]
i) G

- H(s)=1 G(z) = GH(z) . R(z) 1+G(z)
G(z)

can be simplified as



G(z) z—1 z (1—et)z }
— z |(z=12 (z2—1)(z—€Y)

(z—e ') —(1—et)(z—1)
I P PRy

z —0.368 — 0.632z + 0.632
— (z—1)(z — 0.368)

0.368z 4 0.264
= (z—1)(z — 0.368)

=14+ G(z)=10
We know that the characteristics equation is

= (2 —1)(z — 0.368) + 0.368z + 0.264 = 0
= 22— 240632=0

— 2 = 0.5+ 0.618;
— 2z, — 0.5 — 0.618;

|z1] = |22
Since <1, the system is stable.

Three stability tests can be applied directly to the characteristic equation without solving for the
roots.

— Schur-Cohn stability test

— Jury Stability test

— Routh stability coupled with bi-linear transformation.

Other stability tests like Lyapunov stability analysis are applicable for state space system models
which will be discussed later. Computation requirements in Jury test is simpler than Schur-Cohn
when the co-efficients are real which is always true for physical systems.

Jury Stability Test

Assume that the characteristic equation is as follows,

_P[:z:] — {].Dzn | alz"‘_l + ...+ dp—14 + oy g = 0
, Where

Jury Table



! by @Qp—1 Gp-2 tiy
2 ag a; as. a,,
3 b1 bn-a bo

4 by b b1

S Cph_n Cp_3n Co

6 g Cip... Crn

2n—3q: @ qo
where,

Qn Qn-1-k
ap  Ak+1

bn—] bn—Q—k

“=| b b
£k=0,123,....n—2

| 3 po-k

2 Po Pk+1

This system will be stable if:



[—y
)
8
A
2
(=]

3. P(z)|:=—1 > 0for n even and P(z)|.=—1 < 0 for n odd

Ibn—l| > Ibﬂl
lcna| > |eol

Example 2: The characteristic equation is
P(z) = 2 —1.22° 400722 +032—-0.08 =0

g = 1 i) = —1.2 In — 0.07 s — 0.3 iy = —0.08
Thus,

We will now check the stability conditions.

la,| = |aq] =0.08 <ag=1=
First condition is satisfied.

P[l) =1—1240074+03—-008 =009 =>0=
2. Second condition is satisfied.

P(—l} =14+124+007—-03—-008 =189 =0 =
3. Third condition is satisfied.

Next we will construct the Jury Table.

Jury Table

= 0.0064 — 1 = —0.9936

= —-008x%x03+12=1.176




Rest of the elements are also -calculated in a similar fashion. The elements

by = —0.0756 by =—-0204 ¢, =0946 ¢y =—1.184 ¢5=0.315
are .
One can see

|bs| = 0.9936 > |by| = 0.204

2] = 0.946 > |eo| = 0.315

All criteria are satisfied. Thus the system is stable.

P(z) =2" — 1322 — 0082+ 024 =10

Example 3: The characteristic equation is
I — 1 i, = —1.3 Iy — —0.08 iy — 0.24
Thus :

Stability conditions are:

|a3| =024 <ayp=1=
1. First condition is satisfied.

P(l) —1—-13—-008+024=—-014<0=
2. Second condition is not satisfied.

Since one of the criteria is violated, we may stop the test here and conclude that the system is
P(l)=0 P(-1)=0

unstable. or indicates the presence of a root on the unit circle and in

that case the system can at the most become marginally stable if rest of the conditions are

satisfied.

The stability range of a parameter can also be found from Jury's test which we will see in the
next example.

Example 4: Consider the system shown in Figure 1. Find out the range of K for which the
system is stable.

Solution:
G(z) K (0.368z + 0.264)
— (z—1)(z —0.368)
The closed loop transfer K(0.368z + 0.264)
c E*’-’% — 22+ (0.368K — 1.368)z + 0.368 + 0.264K
R(z

function:



P(z) = 22+ (0.368K — 1.368)z 4 0.368 + 0.264K = 0
Characteristic equation:
Since it is a second order system only 3 stability conditions will be there.

1. |as| < ag
2. P{1) =0

3. P(—1) > 0 since n = 2=even. This implies:

1. [0.368 +0.264K| <1 =239> K > -5.18

9. P(1) =1+ (0.368K — 1.368) +0.368 + 0.264K = 0.632K > 0= K > 0
3. P(—1)=1— (0.368K — 1.368) + 0.368 + 0.264K = 2.736 — 0.104K > 0 = 26.38 > K

Combining all, the range of K is found to be 0 <K < 2.39.

If K =2.39, system becomes critically stable. The characteristics equation becomes:

Z—04924+1=0 = z=0.2444 ;0097

Sampling period T =1 sec.

uw 2 0.97
Wy = ;—;iz = i tan ! 0944 = 1.324
rad/sec

The above frequency is the frequency of sustained oscillation.

1.2 Singular Cases

The situation, when some or all of the elements of a row in the Jury table are zero, indicates the
presence of roots on the wunit circle. This is referred to as a singular case.

It can be avoided by expanding or contracting unit circle infinitesimally by an amount & which is
equivalent to move the roots of P(z) off the unit circle. The transformation is:

2= (1+e€)z

where ¢ is a very small number. When ¢ is positive the unit circle is expanded and when ¢ is
negative the unit circle is contracted. The difference between the number of zeros found inside or
outside the unit circle when the unit circle is expanded or contracted is the number of zeros on
the unit circle.



(14 €)"z™ = (1 + ne)z™
Since for both positive and negative ¢, the transformation requires

(1 + ne)
the coefficient of the z" term be multiplied by

P(z) =2° +0252% +24+025=10
Example 5: The characteristic equation:

i — 1 i, = 0.25 il — 1 iy — 0.25

We will now check the stability conditions.

la,| = |as| =025 <ag=1=
First condition is satisfied.

P(l) —14+0254+14+025=25>0=
2. Second condition is satisfied.

P(—1)=—-14+025—1+025=—15<0=

3. Third condition is satisfied.
Jury Table
e e 0.0625 — 1 = —0.9375
apg as
=) M |- P25 L095-0
ap as

Since the element bs is zero, we know that some of the roots lie on the unit circle.

If we replace z by (1 + €) z, the characteristic equation would become:

(1+ 36)23 +0.25(1 + 25)z2 +(14+€2+025=0

+

First three stability conditions are satisfied when g — 0"

Jury Table



Row 2° -1 22
1 0.25 1+ 0.25(1 + 2¢)
2 1+ 3e 0.25(1 + 2¢) 1+e

3 0252 —(1+36) 0.25(1+4¢€) —0.25(1+2¢)(1+3e) —(1+43e)(1+e€)+0.25%(1 + 2¢)

|E}3| = |El.0625 — (1 + Be + 9&2)| |EJD| = |U.O625 — (1 + 3.875¢e + 362”
and .

1+ 66+ 9¢? > 1 + 3.875¢ + 3¢2 |Ba| > |bg|
Since, whene — 07, , thus which implies
that the roots which are not on the unit circle are actually inside it and the system is marginally
stable. The roots of the characteristic equation are found out to be +i and — 0.25 which verifies
our conclusion.

Stability Analysis using Bilinear Transformation and Routh Stability Criterion

Another frequently used method in stability analysis of discrete time system is the bilinear
transformation coupled with Routh stability criterion. This requires transformation from z -plane
to another plane called w -plane.

The bilinear transformation has the following form.

aw + b
z=cw+d
where a, b, c, dare real constants. If we considera= b = c¢c =1 andd =- 1, then the
transformation takes a form
w1
z=w-—1
z+1
w—=z—1

or,

This transformation maps the inside of the unit circle in the z -plane into the left half of the w -
plane.



Let the real part of wbe a and imaginary part be &beta.

= w=a-+j3
. The inside of the unit circle in z -plane can be represented by:

a+30+1
a—+ 358 —1

2| =

<1

w—l—l‘_

w—1

['14'1]2"‘»82 2 2 2 2
:}[a—l}?Jr,B’*‘il:}[ﬂerl) +A < (a—1) " +5" =2a<0

Thus inside of the unit circle in z -plane maps into the left half of w -plane and outside of the unit
circle inz -plane maps into the right half of w-plane. Although w -plane seems to be similar
to s -plane, quantitatively it is not same.

w + 1

P
In the stability analysis using bilinear transformation, we first substitute w1 in the
characteristics equation P(z) = 0and simplify it to get the characteristic equation in w -plane
asQ(w) =0. Once the characteristics equation is transformed as Q(w) =0, Routh stability
criterion is directly used in the same manner as in a continuous time system.

We will now solve the same examples which were used to understand the Jury's test.

P(z) =2 — 1322 — 0082+ 024 =10
Example 1 The characteristic equation:

Transforming P(z) into w -domain:

w —

Qw) = [“’J_rl} ~13 [“”—J“” — 0.08 {Wﬂ 1024=0

Q(w) = 0.14w® — 1.06w® — 5.1w — 1.98 = 0
or,

We can now construct the Routh array as

w®  0.14 —5.1
w? —1.06 —1.98
1 _5.36



There is one sign change in the first column of the Routh array. Thus the system is unstable with
one pole at right hand side of the w -plane or outside the unit circle of z -plane.

Example2: The characteristic
P(z) = 2t —1.22° 400722+ 032 - 008 =0
equation:

Transforming P(z) into w -domain:

, ]_ 4 1 3 , 1 2 1
Q(w)z[“ } — 1.2 [w——|—1] +D.n?[“+1} +0.3 [w+1]—0.nszo

w— 1 w — w— w —

Q(w) = 0.09w* 4 1.32uw° 4 5.38uw? + 7.32w + 1.89 = 0
or,

We can now construct the Routh array as

w? 0.09 538 1.89
w? 1.32 7.32

w? 4.88 1.80

w!  6.81

w® 1.89

All elements in the first column of Routh array are positive. Thus the system is stable.
Example 3:

Consider the system shown in Figure 1. Find out the range of K for which the system is stable.
Solution:

K(0.08422 4 0.17z + 0.019)
G(z) = (2° — 1.52% + 0.553z — 0.05)

G(s)
R(s) + E(s) » E*(s) ) Jo1—ee N 1 C(s)
T =1 K " ES " s+ 1)(s+ 2] "




Figure 1: Figure for Example 3

Characteristic equation:

K(0.084z° + 0172 +0.019)

1 —
T _ 152 105532 — 0.05)

P(z) = 2° + (0.084K — 1.5)z° + (0.17K + 0.553)z + (0.019K — 0.05) = 0

Transforming P(z) into w -domain:

1 11° 1 17? 11
Qw) = | 2| 4 (0.084K — 15) || 4 (0.17K +0.553) | " | 1 (0.019K — 0.05) = 0
w—1 w—1 w—1
or,

Q(w) = (0.003 4+ 0.27K)w® + (1.1 — 0.11K)w?® + (3.8 — 0.27K)w + (3.1 + 0.07K) =0

We can now construct the Routh array as

w® 0.003 + 0.27K 3.8 —0.27K

w? 1.1 -0.11K 3.1+ 0.07TK

0.01K? — 1.55K +4.17
11-011K

—

w

w? 3.14+0.07K

The system will be stable if all the elements in the first column have same sign. Thus the
conditions for stability, in terms of K, are

0.003 4 0.27TK = =K > —0.011
1.1 -0.11K > 0 =K < 10

0.01K? — 1.55K =204 K > 140.98
or,

31+007TK >0=K > —44.3



Combining above four constraints, the stable range of K can be found as

—0.011 <« K < 2.74

» Singular Cases
In Routh array, tabulation may end in occurance with any of the following conditions.

. The first element in any row is zero

. All the elements in a single row are zero.
The remedy of the first case is replacing zero by a small number ¢ and then proceeding with the
tabulation. Stability can be checked for the limiting case. Second singular case indicates one or
more of the following cases.

. Pairs of real roots with opposite signs.

. Pairs of imaginary roots.

. Pairs of complex conjugate roots which are equidistant from the origin.
When a row of all zeros occurs, an auxiliary equation A(w)=0is formed by using the
coefficients of the row just above the row of all zeros. The roots of the auxiliary equation are
also the roots of the characteristic equation. The tabulation is continued by replacing the row of

dA(w)
dar

zeros by the coefficients of

Looking at the correspondence between w -plane and z -plane, when an all zero row occurs, we
can conclude that following two scenarios are likely to happen.

. Pairs of real roots in the z -plane that are inverse of each other.
. Pairs of roots on the unit circle simultaneously.
Example 4:

Consider the characteristic equation

P(z) = 22 1722 —24+08=0

Transforming P(z) into w -domain:



Qw) = [“’“_Llr—m [“’—Hr— [“’H} +0.8=0

w—1

Q(w) = 0.9w* + 0.1w? — 81w —0.9 =0
or,

The Routh array:
w® 0.9 —8.1
w? 0.1 -09
w' 0 0

The tabulation ends here. The auxiliary equation is formed by using the coefficients of w? row,
as:

Alw) = 0.1w? —09=0

Taking the derivative,

Thus the Routh tabulation is continued as
w® 0.9 —8.1
w2 0.1 —09
w! 0.2 0
w?® —0.9

As there is one sign change in the first column, one of the roots is on the right hand side of
the w -plane. This implies that one root inz-plane lies outside the unit circle.

#1722 —2+4+08=0
To verify our conclusion, the roots of the polynomial , are foun



outto be z=0.5,z=-0.8 and z = 2. Thus one can see that z = 2 lies outside the unit circle and it
is inverse of z = 0.5 which caused the all zero row in w -plane.

Unit-V

Design of Discrete-time Control Systems by
Conventional Methods

UNIT SYLLABUS
Transient and steady state specifications — Design using frequency response in the w—plane for
lag and led compensators — Root locus technique in the z— plane

Unit Objectives:
After reading this Unit, you should be able to understand:

» To study the conventional method of analyzing digital control systems in the w—plane. To
study the design of state feedback control by “the pole placement method.”

Unit Outcomes:

» The learner understands the stability of digital control systems and how to make the unstable
system to stable. The leaner will understand about designing of systems by conventional
methods like root locus and bode plot through bilinear transformation.

» Time Response of discrete time systems

Absolute stability is a basic requirement of all control systems. Apart from that, good relative
stability and steady state accuracy are also required in any control system, whether continuous
time or discrete time. Transient response corresponds to the system close loop poles and steady
state response corresponds to the excitation poles or poles of the input function.

» Time response specifications

In many practical control systems, the desired performance characteristics are specified in terms
of time domain quantities. Unit step input is the most commonly used in analysis purpose of a
system since it is easy to generate and represents a sufficiently drastic change thus provides
useful information on both transient and steady state response.

The transient response of a system depends on the initial conditions. It is a common practice to



consider the system initially at rest.
Consider the digital control system shown in Figure 1

1(t) ) v o
(<) = Digital Hold Plant
& = T Controller

L)

T

Figure 1: Block Diagram of a closed loop digital system

Similar to the continuous time case, transient response of a digital control system can also be
characterized by the following.

i,
1. Rise time (): Time required for the unit step response to rise from 0% to 100% of its final
value in case of underdamped system or 10% to 90% of its final value in case of overdamped
system.

ta
2. Delay time ( ): Time required for the the unit step response to reach 50\% of its final value.

t
3. Peak time ( iﬂ): Time at which maximum peak occurs.

M.
4. Peak overshoot ( Ij): The difference between the maximum peak and the steady state value
of the unit step response.

L.
5. Settling time ( ): Time required for the unit step response to reach and stay within 2% or 5%
of its steady state value. However since the output response is discrete the calculated
performance measures may be slightly different from the actual values. Figure 2 illustrates this.

C

The output has a maximum value " Whereas the maximum value of the discrete output

c* c

m

is . which is always less than or equal to ™ 1f the sampling period is small enough

compared to the oscillations of the response then this difference will be small

C_*

) ast:ho
otherwise may be completely erroneous.



/ [‘-T.II

Figure 2: Unit step response of a discrete time system
»  Steady state error
The steady state performance of a stable control system is measured by the steady error due to

step, ramp or parabolic input depending on the system type. Consider the discrete time system as
shown in Figure 3.

rH':I ':l:ﬂ :“l:tjl Ty r:H':I
o5 PN Gyls) -
T 5
Hs) =

Figure 3: Block Diagram 2

From Figure 2, we can write

We  will consider the steady state error at the sampling instants.
From final value theorem



lim ¢(kT) = lim [(1 — :_L}E(:}]

k—oo z—1

G(z) = (1-2zYZ GPS(S}
GH(z) = (1-27)Z 'GP(SZH(s)]

1
or, F(z) = L+ GH(2) (2)
= g = !1_1:} (1-— :_l)l-l-%H(:}R(:}]

The steady state error of a system with feedback thus depends on the input signal

R(z) GH(z)
and the loop transfer function :

» Type-0 system and position error constant

Systems having a finite nonzero steady state error with a zero order polynomial input (step input)
are called Type-0 systems. The position error constant for a system is defined for a step input.

r(t) = wug(t) unit step input
1
R(z) = ——
: 1 1
€ss = I

11+ GH(z) 1+K,

K,=1lmGH(z)
where == is known as the position error constant.

» Type-1 system and velocity error constant



Systems having a finite nonzero steady state error with a first order polynomial input (ramp
input) are called Type-1 systems. The velocity error constant for a system is defined for a ramp
input.

r(t) = wur(t) umtramp
d R T
(2) (z—1)2 (1—-2Z-1)2
: f if 1
& = hIm = —

2—1 (.’_’ = I)G]{(:) ]\—1.'

1
K, = ?llm [(z—1)GH(z)]

z—s]

where is known as the velocity error constant.
» Type-2 system and acceleration error constant
Systems having a finite nonzero steady state error with a second order polynomial input

(parabolic input) are called Type-2 systems. The acceleration error constant for a system is
defined for a parabolic input.

R(z) = -
() 2z — 1) 2(1 =z-1)?
Eiy = T_2 lim #t 1) - 1 -
9 1 (z — 1)2[1 + GH(2)] lim, 1 EGH(z) Ka

where is known as the acceleration error constant.

Tablel shows the steady state errors for different types of systems for different inputs.



Table 1: Steady state errors

System | Step input | Ramp mput | Parabolic input
i]
Type-0 i 00 00
1
Type-1 0 e 00
K, :

Type-2 0 0 —

K,

Example 1: Calculate the steady state errors for unit step, unit ramp and unit parabolic inputs for

the system shown in Figure 4.

Ale) Ele b Bl pom 1000 L -

Cis)

300 -

Figure 4: Block Diagram for Example 1

Solution: The open loop transfer function is:

G(s) = gffs}f@w(s}&*p(s}
1—e T 1000/10

s s(s+ 500/10)

Taking Z-transform

110 10
Glz) = 201-2Y Z|=—
(2) ( ) Li’ 5005 500(s + 5[1(1[1)]
T= 10z 10z

— ‘) — "‘_l -

2A1-27) [(: “1)2 500 —1) T 5000z e—5‘3‘T}]

L [(500T — 10 + 10~y z — (5007 + 10)e="" 4 10
2500 (z = 1)(z — e=3T)

Steady state error for step

. P
input where



Steady state error for ramp

K, K,=tlim._;[(z—1)C(z)] =2 = er*m> — 0.5
input where . :

Steady state error for parabolic
1
E I"Lra T%llm:_;]_ “.Z — 1)2G|{ZJ] — 0 — Eggra. — o0
input where .

1 Prototype second order system

The study of a second order system is important because many higher order system can be
approximated by a second order model if the higher order poles are located so that their
contributions to transient response are negligible. A standard second order continuous time
system is shown in Figure 1.

R(s) E(s) - 2 Cls)

sl:s + Efu.ln:l

1
+
1

Figure 1: Block Diagram of a second order continuous time system

We can write,
)2
G(s) = “n
( $(s 4 26wn)
Closed loop: G.(s) = i
| brtre 82 + 26w s + w?
where, &= damping ratio
w, = natural undamped frequency
Roots: —&w, £ juny/1 — &2
> Bode Plot

Bode plot is the graphical tool for drawing the frequency response of a system.

It is represented by two separate plots, one is the magnitude vs frequency and the other one is
phase vs frequency. The magnitude is expressed in dB and the frequency is generally plotted in
log scale.

One of the advantages of the Bode plot in s-domain is that the magnitude curve can be
approximated by straight lines which allows the sketching of the magnitude plot without exact



computation.

This feature is lost when we plot Bode diagram in z-domain. To incorporate this feature, we use
bi-linear transformation to transform unit circle of the z-plane into the imaginary axis of another
complex plane, w plane, where

1
= —1
w= n(z)
From the power series expansion
2(z—1)
w = —
T(z+1)
2 { wT
. T + w + D)
N i | - ) wT
= o = B

For frequency domain analysis the above bi-linear transformation may be used to
convert GH(z) toGH(w) and then construct the Bode plot.

Example 1: Let us consider a digital control system for which the loop transfer function is given
by

0.095
GH(z) = :
(z —1)(z—0.9)
14 =L
= =
1=
where sampling time T = 0.1 sec. Putting , We get the transfer function in w plane

as



~10.02(1 — 0.0025w2)

GH(w
() = =1 + 1.0026w)

(T = 0.1sec)

10.02(1 — 0.05w)(1 + 0.05w)
w(1 + 1.0026w)

10.02(1 — 0.05je,, ) (1 + 0.05jw,)
(1 + j1.0026w,)

iy
where is the frequency in w plane. Corner frequencies are 1/1.0026 = 0.997 rad/sec and
1/0.05 = 20 rad/sec.

The straight line asymptotes of the Bode plot can be drawn using the following.

e « Up toww=0.997rad/sec, the magnitude plot is a straight line with slope -
20dB/decade.At ww= 0.01 rad/sec,the magnitude

20 ln::rgm(llil.DQ) — 20 logm({].l]l) = 60
is dB.

* From ww= 0.997 rad/sec to ww= 20 rad/sec, the magnitude plot is a straight line with slope - 20
- 20 = - 40 dB/decade.

* Since both of the zeros will contribute same to the magnitude plot, after ww= 20 rad/sec, the
slope of the straight line will be - 40 + 20 + 20 = 0 dB/decade.

The asymptotic magnitude plot is shown in Figure 1.
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Figure 1: Bode asymptotic magnitude plot for Example 1
One should remember that the actual plot will be slightly different from the asymptotic plot. In

the actual plot, errors due to straight line assumptions is compensated.

Phase plot is drawn by varying the frequency from 0.01 to 100 rad/sec at regular intervals. The
phase angle contributed by one zero will be canceled by the other. Thus the phase will vary from

- 90° (270°) to - 180° (180°).

Figure 2 shows the actual magnitude and phase plot as drawn in MATLAB.



Bode Diagram
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Figure 2: Bode magnitude and phase plot for Example 1

»  Gain margin and Phase margin

Gain margin and phase margins are the measures of relative stability of a system.

Similar to continuous time case, we have to first define phase and gain cross over frequencies
before defining gain margin and phase margin.

Gain margin is the safety factor by which the open loop gain of a system can be increased before

the system becomes unstable. It is measured as

GM = 20log,, dB

GH (eT)

where @y is the phase crossover frequency which is defined as the frequency where the phase of
GH(e™T)
the loop transfer function is 180°.

Similarly, Phase margin (PM) is defined as

PM = 180° + LGH(e*T)



where wyq is the gain crossover frequency which is defined as the frequency where the loop gain
magnitude of the system becomes one.

> Compensator design using Bode plot

A compensator or controller is added to a system to improve its steady state as well as dynamic
responses.

Nyquist plot is difficult to modify after introducing controller.

Instead Bode plot is used since two important design criteria, phase margin and gain crossover
frequency are visible from the Bode plot along with gain  margin.

Points to remember

» Low frequency asymptote of the magnitude curve is indicative of one of the error
va'.- }:{r b Hva

constants depending on the system types.

» Specifications on the transient response can be translated into phase margin (PM), gain
margin (GM), gain crossover frequency, bandwidth etc.

» Design using bode plot is simple and straight forward.

» Reconstruction of Bode plot is not a difficult task.

» Phase lesd, Phase lag and Lag-lead compensators

Phase lead, phase lag and lag-lead compensators are widely used in frequency domain design.
Before going into the details of the design procedure, we must remember the following.

» Phase lead compensation is used to improve stability margins. It increases system
bandwidth thus improving the spread of the response.

> Phase lag compensation reduces the system gain at high frequencies with out reducing
low frequency gain. Thus the total gain/low frequency gain can be increased which in
turn will improve the steady state accuracy. High frequency noise can also be attenuated.
But stability margin and bandwidth reduce.

» Using a lag lead compensator, where a lag compensator is cascaded with a lead
compensator, both steady state and transient responses can be improved.

» Bi-linear transformation transfers the loop transfer function in z -plane to w-plane.

Since qualitatively w -plane is similar to s -plane, design technique used in s -plane can
be employed to design a controller in w -plane.

Once the design is done in w -plane, controller in z -plane can be determined by using the
inverse transformation from w -plane to z -plane.

In the next two lectures we will discuss compensator design ins-plane and solve
examples to design digital controllers using the same concept.



» Compensator Design Using Bode Plot

In this lecture we would revisit the continuous time design techniques using frequency domain
since these can be directly applied to design for digital control system by transferring the loop
transfer function in  -planeto  -plane.

» Phase lead compensator

If we look at the frequency response of a simple PD controller, it is evident that the magnitude of
the  compensator  continuously  grows  with  the increase in  frequency.

The above feature is undesirable because it amplifies high frequency noise that is typically
present in any real system.

In lead compensator, a first order pole is added to the denominator of the PD controller at
frequencies well higher than the corner frequency of the PD controller.

A typical lead compensator has the following transfer function.

s + 1

ats 4+ 1’ o < 1
where,

C(s) = K

1
o
is the ratio between the pole zero break point (corner) frequencies.
v 1+ wr?
v 1+ olwir?

Magnitude of the lead compensator is . And the phase contributed by the
lead compensator is given by

K

; ~1 -1
¢ =tan "wr —tan " owT

Thus a significant amount of phase is still provided with much less amplitude at high
frequencies.

The frequency response of a typical lead compensator is shown in Figure 1 where the magnitude

W0loe. K 2010810

) =10 . .
varies from to and maximum phase is always less than 90° (around

60° in general).
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Figure 1: Frequency response of a lead compensator

It can be shown that the frequency where the phase is maximum is given by

The maximum phase corresponds to

ind ] — o
SIN O =
14+«
1 — sin(¢
e b, (g.mﬂxj
1+ sin(@max)
C(s) at wpay 1S i
The magnitude of Vo

Example 1: Consider the following system



1

G(S) — 5[:5—_'_1)1

H(s)=1

Design a cascade lead compensator so that the phase margin (PM) is at least 45° and steady state
error for a unit ramp input is<0.1

The lead compensator is

where,
When s — 0, C(s) = K.
Steady state error for unit ramp input is
1 1 1

lim, ., sC'(s)G(s) C'(0) K
. | .
Thus — =0.1. or K = 10.
K

PM of the closed loop system should be 45°. Let the gain crossover frequency of the
uncompensated system with K be «y.

1
G(-]“") = B o
jw(jw + 1)
1
Mag: = «—r
Phase = —90°—tan !w
g 10 =
W'q\/H‘—wg
100 _
w2(1 + w?)
= L‘}g = :_))1

Phase angle at wg=3.1is -90 - tan 1 3.1 = - 162° . Thus the PM of the uncompensated system
with K is 18°.

If it was possible to add a phase without altering the magnitude, the additional phase lead



required to maintain PM= 45° is 45° - 18° = 27° atwg=3.1rad/sec.

However, maintaining same low frequency gain and adding a compensator would increase the
crossover frequency. As a result of this, the actual phase margin will deviate from the designed
one. Thus it is safe to add a safety margin of ¢ to the required phase lead so that if it devaites
also, still the phase requirement is met. In general ¢ is chosen between 5° to 15°.

So the additional phase requirement is 27° + 10° = 37°, The lead part of the compensator will
provide this additional phase at wmax .

Thus

/ —  9mo
Omax — 37

1 — sin(@max) )

—— = 0.25
1 + sim(@max)

U
|

The only parameter left to be designed is z. To find z, one should locate the frequency at which

1
—2{] ].DE;LD E

the uncompensated system has a logarithmic magnitude of

Select this frequency as the new gain crossover frequency since the compensator provides a gain

1
¥

of at wmax. Thus

1 J—

“max — IL"J"'g:u-e:ar.l - T‘\/E_l'

In this case wmax = @wgnew= 4.41 . Thus

T

= 0.4535

1
141 /a

The lead compensator is thus

0.4535s + 1
Cls) = 10 =225 T 2
(5) 0.1134s + 1



With this compensator actual phase margin of the system becomes 49.6° which meets the design
criteria.

The corresponding Bode plot is shown in Figure 2

Bode Diagram
Gm = Inf dB (at Inf rad/sec) , Pm = 49.6 deg (at 4.41 rad'sec)

1o o {0 1o 10 10
Frequency (rad’sac)

Figure 2: Bode plot of the compensated system for Example 1

Example2:

Now let us consider that the system as described in the previous example is subject to a sampled
data control system with sampling time T = 0.2 sec. Thus

o ;]
G.(z) = (1-2z )Z Lg(s-%-l')

0.0187z + 0.0175
z2 — 1.8187z + 0.8187

The bi-linear transformation

C14wT/2 (1+01w)
T 1—wT/2 (1—0.1w)

ot


http://nptel.ac.in/courses/108103008/module5/lec6/3.html#m5l6f2

G.(z)
will transfer into w -plane, as

oy (At as) (1 55)
Cul) = w3 D)

[please try the simplification]

We need first design a phase lead compensator so that PM of the compensated system is at least
50° with Ky = 2 . The compensator in w -plane is

1+ 7w
Clw)=K—""  0<a<l

14 aTtw

Design steps are as follows.
K has to be found out from the Ky requirement.
Make wmax = Wgnew-

Compute the gain crossover frequency wg and phase margin of the uncompensated system after
introducing K in the system. At wq check the additional/required phase lead, add safety margin,

@max @Pmax

find out . Calculatea from the required

1
20log

(=R
o)

Since the lead part of the compensator

provides a gain of , find out the frequency where the logarithmic magnitude
1

—20log,, —
o

is . This will be the new gain crossover frequency where the maximum phase
1

Woew — Wmax =

lead should occur. Calculate z from the relation TVa

Now,

K, = lm wClw)&,(w)

w—=0

]

if{:r

Using MATLAB command ~“margin", phase margin of the system with K = 2 is computed as
31.6° with wg = 1.26 rad/sec, as shown in Figure 3.
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Bode Diagram
Gm =143 dB (at 3.22 rad’=ec) , Pm = 31.6 deg (at 1.26 rad/sac)
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Figure 3: Bode plot of the uncompensated system for Example 2

Thus the required phase lead is 50° - 31.6° = 18.4° . After adding a safety margin of 11.6°

ql"'} max

becomes 30° . Hence

1 — sin(29°)
= —0.33
“ (1 + ain(?g"))

From the frequency response of the system it can be found out that at w = 1.75 rad/sec, the

1
—20log,, —
o
magnitude of the system is . Thus @wmax = wgnew= 1.75 rad/sec. This gives
1
1.75 =
{ Ty o
1
T=—+—=10.09
1.754/0.33
Or,
Thus the controller in w-plane is
1+ 0.99uw
Clw) -

T 1032w



The Bode plot of the compensated system is shown in Figure 4.

Bode Diagram
Gm =143 dB (at 5.64 rad’sec) , Pm = 50.3 deg (at 1.75 rad/sec)
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Figure 4: Bode plot of the compensated system for Example 2

w— 1072
z+1

Re-transforming the above controller into z -plane using the relation , We get the
controller in z -plane, as

9 2.5bz — 2.08
z — 0.53

a
—
]
N
|

» Lag Compensator Design

In the previous lecture we discussed lead compensator design. In this lecture we would see how
to design a phase lag compensator

» Phase lag compensator

The essential feature of a lag compensator is to provide an increased low frequency gain, thus
decreasing the steady state error, without changing the transient response significantly.

For frequency response design it is convenient to use the following transfer function of a lag
compensator.
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75+ 1

ars+ 17 a > 1
where,

Clag(s) =

The above expression is only the lag part of the compensator. The overall compensator is

C(s) = KCiay(s)

when, s = 0, Clgy(s) = a

when, s — 0o, Cigy(s) — 1

Typical objective of lag compensator design is to provide an additional gain of « in the low
frequency region and to leave the system with sufficient phase margin.

The frequency response of a lag compensator, with =4 and =3, is shown in Figure 1 where the
20log, o
magnitude varies from dB to 0 dB.

Bode Diagram of a lag compensator
Gm = Inf, Pm = -180 deg (at Inf rad/sec)
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Figure 1: Frequency response of a lag compensator

Since the lag compensator provides the maximum lag near the two corner frequencies, to
maintain the PM of the system, zero of the compensator should be chosen such that w =1/t is
much lower than the gain crossover frequency of the uncompensated system.



In general, 7 is designed such that 1/ z is at least one decade below the gain crossover frequency

of the uncompensated system. Following example will be comprehensive to understand the
design procedure.

Example 1: Consider the following system

1

Gy A=l

G(s) =

Design a lag compensator so that the phase margin (PM) is at least 50° and steady state error to a
< (0.1

unit step input is

The overall compensator is

s+ 1

ats + 1’ o > 1
where,

C(s) = KCjoy(s) = Ka

When £ 0, C(s) = Ka.

Steady state error for unit step input is
1 B 1 B 1
1 +lim. ., C(s)G(s) 14C(0) 1+ Ka

1

——— =0.1, or, Ka=09.
Thus, 1+ Ka

Now let us modify the system transfer function by introducing K with the original system. Thus
the modified system becomes

K
(s 4+ 1)(0.55 4+ 1)

Gonls) =

PM of the closed loop system should be 50°. Let the gain crossover frequency of the
uncompensated system with K be ayg .



K

Cmli) = DR
Mag. = i
' V1 + w*v1+ 0.25w2
Phase = —tan 'w —tan™10.5w

Required PM is 50°. Since the PM is achieved only by selecting K, it might be deviated from this
value when the other parameters are also designed. Thus we put a safety margin of 5° to the PM
which makes the required PM to be 55°.

= 180° — tan ' w, — tan "' 05w, = 55

_1 Wy + 0.5w,

or, tan ——————> = 125°
1 — 0.5w?
g
1 l.:)wg R >
or, tanT ———— = tan125°=-143
1 — 0.5w;

or, 0.715w; — 1.5w; — 143 = 0
= w; = 2.8rad/sec

To make wg = 2.8 rad/sec, the gain crossover frequency of the modified system, magnitude
at wgshould be 1. Thus

-P(F _—
VI+wi/T+025w2

Putting the value of wg in the last equation, we get K = 5.1. Thus,

0
a—=—=1

76
I

The only parameter left to be designed is 7.

Since the desired PM is already achieved with gain K, We should place » = 1/ 7 such that it does
not much effect the PM of the modified system with K. If we place 1/ z one decade below the
gain crossover frequency, then



10° T = 3.57
or,
The overall compensator is
3.57s+1
Cls) =9 —
() =9 5337

With this compensator actual phase margin of the system becomes 52.7°, as shown in Figure 2,
which meets the design criteria.

Bode Diagram
Gm = InfdB (at Inf rad/sec), Pm =527 deg (at 2.5 rad/sec)
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Figure 2: Bode plot of the compensated system for Example 1

Example2:

Now let us consider that the system as described in the previous example is subject to a sampled
data control system with sampling time T = 0.1 sec. We would use MATLAB to derive the plant
transfer function w -plane.
Use the below commands.

>> s=tf('s");

>> gc=1/((s+1)*(0.5*s+1));

>> gz=c2d(gc,0.1,'zoh");
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You would get

Col) = 0.009z + 0.0008
T T T T4z 1 0741

The bi-linear transformation

14 wT/2  (1+0.05)
T 1—wT/2  (1—0.05w)

ot

G.(z)

will transfer into w-plane. Use the below commands

>> aug=[0.1,1];

>> gwss = bilin(ss(gz),-1,"S_Tust',aug)

>> gw=tf(gwss)

to find out the transfer function in w-plane, as

1.992 — 0.09461w — 0.00023w?
w? + 2.993w + 1.992

—0.00025(w — 20)(w + 400)
(w+ 1)(w +2)

Gu(w) =

112

The Bode plot of the uncompensated system is shown in Figure 3.
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Bode Diagram
Gm =30dB (at 5.1 radizsec) , Pm =-180deg (at 0 rad'sec)
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Figure 3: Bode plot of the uncompensated system for Example 2

We need to design a phase lag compensator so that PM of the compensated system is at least 50°
and steady state error to a unit step input is 0.1. The compensator in w -plane is

1+ 7w

Ckl—
1+ atw

Clw) =K a1

where,

C(0) = Ka

Guw(0)=1, Ka=9

Since , for 0.1 steady state error.

Now let us modify the system transfer function by introducing K to the original system. Thus the
modified system becomes

—0.00025K (w — 20)(w + 400)
(w+ 1)(w + 2)

G (w) =

PM of the closed loop system should be 50°. Let the gain crossover frequency of the
uncompensated system with K be wg . Then,



0.00025 K /400 + w2/160000 + w?
\/1 "i‘wg\/-'i + w?

Phase(G,,) = —tan 'w —tan~'0.5w — tan~' 0.05w + tan—! 0.0025w

Mag.(Gm) =

Required PM is 50°. Let us put a safety margin of 5°. Thus the PM of the system modified
with Kshould be 55°.

= 180° — tan! Wy — tan ! 0.5w, — tan ! 0.05w, + tan~! 0.0025w, = 55°

0.05w, — 0.0025w :
— tan ! g <9 _ 195°

1 —0.5w2 1 + 0.000125w2

_q Wy + 0.5w,

or, tan

By solving the above, wg = 2.44 rad/sec. Thus the magnitude at wg should be 1.

N D.ODDQBKJ@D + w? JIGDGGD + w? .
VI wiyA+w]

Puttingg the value ofwgin the last equation, we getK= 413

Thus,

If we place 1/ 7 one decade below the gain crossover frequency, then

1 B 2.44
T 10 ° T=4.1
or,
Thus the controller in w -plane is
1+ 41w
Clw)=9———
Sy
w— 2021
z+1

Re-transforming the above controller into z -plane using the relation , We get



f oy Bk e

Ci(z) = 9 =
1+20x89 % —
241
83z — 81
= Y70 17

The Bode plot of the compensated system is shown in Figure 4.

EBode Diagram
Gm =17.3dB (at 7.91 rad=ec) , Pm = 51.7 deg (at 2.45 rad'sac)
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Figure 4: Bode plot of the compensated system for Example 2

» Lag -lead Compensator

When a single lead or lag compensator cannot guarantee the specified design criteria, a lag-lead
compensator is used.

In lag-lead compensator the lag part precedes the lead part. A continuous time lag-lead
compensator is given by

l+7ms 1+ ms

Cls) = K
Il +ayms 1+ asms ap =1, as <1
where,
1 1 1 1
] Ty TL Ta2 ¥2Ta ) ) )
The corner frequencies are : : : . The frequency response is shown in Figure

1.
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Bode Diagram
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Figure 1: Frequency response of a lag-lead compensator

In a nutshell,

If it is not specified which type of compensator has to be designed, one should first check the PM
and BW of the uncompensated system with adjustable gain K.

If the BW is smaller than the acceptable BW one may go for lead compensator. If the BW is
large, lead compensator may not be useful since it provides high frequency amplification.

One may go for a lag compensator when BW is large provided the open loop system is stable.

If the lag compensator results in a too low BW (slow speed of response), a lag-lead compensator
may be used.

» Lag-lead compensator design

Example 1 Consider the following system with transfer function



1
C s(140.1s)(1+0.2s)

G(s)

Design a lag-lead compensator C(s) such that the phase margin of the compensated system is at
least 45° at gain crossover frequency around 10 rad/sec and the velocity error constant Ky is 30.

The lag-lead compensator is given by

l+7ms 1+ ms

Il +ayms 1+ asms ap =1, a, <1
where,

Cs) = K

when $ —+ 0, C(s) = K.

K, = lim sG(s)C(s) = C(0) = 30

s—+0

Thus K = 30 . Bode plot of the modified system KG(s) is shown in Figure 2. The gain crossover
frequency and phase margin of KG(s) are found out to be 9.77 rad/sec and -17.2° respectively.

Bode Diagram
Gm = -6.02 dB (at 7.07 rad/sec), Pm =-17.2 deg (at 9.77 rad/sec)
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Figure 2: Bode plot of the uncompensated system for Example 1

Since the PM of the uncompensated system with K is negative, we need a lead compensator to
compensate for the negative PM and achieve the desired phase margin.

However, we know that introduction of a lead compensator will eventually increase the gain
crossover frequency to maintain the low frequency gain.

Thus the gain crossover frequency of the system cascaded with a lead compensator is likely to be
much above the specified one, since the gain crossover frequency of the uncompensated system
withK is already 9.77 rad/sec.
Thus a lag-lead  compensator is  required to  compensate  for  both.

We design the lead part first.

From Figure 2, it is seen that at 10 rad/sec the phase angle of the system is -198°.

Since the new wq should be 10 rad/sec, the required additional phase at wg, to maintain the
specified PM, is 45 - (180 - 198) = 63° . With safety margin 2°,

1 — sin(657)
7 = ~0.05
2 (1 + b-in(rsaa))

And
1
10 =
T2 V/EE
™ = 0.45
which gives . However, introducing this compensator will actually increase the gain

crossover frequency where the phase characteristic will be different than the designed one. This
can be seen from Figure 3.



Bode Diagram
Gm = 0.834 dB (at 24.4 rad/sec), Pm = 2.38 deg (at 23.2 rad/sec)
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Figure 3: Frequency response of the system in Example 1 with only a lead compensator
The gain crossover frequency is increased to 23.2 rad/sec. At 10 rad/sec, the phase angle is -134°

and gain is 12.6 dB. To make this as the actual gain crossover frequency, lag part should provide
an attenuation of -12.6 dB at high frequencies.

1;(1"_1']_
At high frequencies the magnitude of the lag compensator part is . Thus,

20log 00 = 12,6

oy = 4.27 1/m
which gives . Now, should be placed much below the new gain crossover
1;'{7']_
frequency to retain the desired PM. Let be 0.25. Thus

=1

The overall compensator is



1 +4s 1+ 0.45s
1+ 17.08s 1+ 0.0225s

C(s) = 30

The frequency response of the system after introducing the above compensator is shown in
Figure 4, which shows that the desired performance criteria are met.

Bode Diagram
Gm =13.3dB (at 24.1 rad/sec), Pm =45.3 deg (at 10 rad/sec)

100 - . .

Magnitude (dB)

Phase (deg)

| |
Mo Mo
=] Mo
o

107 10° 107
Frequency (rad/sec)

Figure 4: Frequency response of the system in Example 1 with a lag-lead compensator

Example 2:

Now let us consider that the system as described in the previous example is subject to a sampled
data control system with sampling time 7" = (0.1 sec. We would use MATLAB to derive the
plant transfer function w -plane.

Use the below commands.

>> s=tf('s");

>> gc=1/(s*(1+0.1*s)*(1+0.2*3));
>> gz=c2d(gc,0.1,'zoh");

You would get



G.(2) = 0.005824z 4 0.01629z + 0.002753
T T 1974 + 1198z — 0.2231

The bi-linear transformation
B 1+ wT;‘E B (14 0.05w)
] —wT/‘E N (1 — 0.05w]

ot

G-(z)
will transfer into u-plane. Use the below commands
>> aug=[0.1,1];
>> gwss = bilin(ss(gz),-1,'S_Tust',aug)
>> gw=tf(gwss)

to find out the transfer function in w -plane, as

G (w) = 0.001756w" — 0.06306w* — 1.705w + 45.27
WA T T + 14.14w? + 4527w — 5.629 »x 10714

Since the velocity error constant criterion will produce the same controller dcgain /1, the gain
of the lag-lead compensator is designed to be 30.

The Bode plot of the uncompensated system with /' = 30 is shown in Figure 5.
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Bode Diagram
Gm = -10.6dB (at 5.44 rad/sec) , Pm = —44 deg (at 10.4 rad/sec)

Magnitude (dB)

Systemn: untitled1
aof Frequency (rad'sec): 10 .
Fhase (deg): 122

10 0 10’ 10° 10°
Frequency (rad/sec)
Figure 5: Bode plot of the uncompensated system for Example 2

Phasze (deg)

139 = —221°
From Figure 5, it is seen that at 10 rad/sec the phase angle of the system is

Thus a huge phase lead (86) is required if we want to acieve a PM of 45% which is not

possible with a single lead compensator. Let us lower the PM requirement to a minimum
w, = 10

of 20° at rad/sec.

Since the new  should be 10 rad/sec, the required additional phase at g, to maintain the
20 — (180 — 221) = 61°
specified PM, is . With safety margin 57,

1 — sin(667)
7 = — 0.045
2 (1 + sincsﬁﬂj)

And
1
10 =
Tz-\/az
™ = 0.47
which gives . However, introducing this compensator will actually increase the gain

crossover frequency where the phase characteristic will be different than the designed one. This
can be seen from Figure 6.
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Bode Diagram
Gm=-10.8 dB (at 14.2 rad’sec), Pm = Inf

a0

40f -
i)
B
e 30t .
! System: untitledl
E ol Frequency (rad/sec): 10 |
E‘ = Magnitude (dB): 14.2

| ]
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Figure 6: Frequency response of the system in Example 2 with only a lead compensator

Also, as seen from Figure 6, the GM of the system is negative. Thus we need a lag compensator
to lower the magnitude at 10 rad/sec.

At 10 rad/sec, the magnitude is 14.2 dB. To make this as the actual gain crossover frequency,

—14.2
lag part should provide an attenuation of dB at high frequencies.
Thus,
20log,, 0 = 14.2
ap = 5.11 1/m
which gives . Now, should be placed much below the new gain crossover
1/ 10/10=1
frequency to retain the desired PM. Let be . Thus

The overall compensator is
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1w 1+ 047w
C(w) = 30
() (1 + 5.11?_1..) (1 —|—'[].l]'2115w)

The frequency response of the system after introducing the above compensator is shown in
Figure 7, which shows that the desired performance criteria are met.

Bode Diagram
Gm =2.87 dB (at 13.6 rad/sec) , Pm = 20 deg (at 10 rad/sec)

Magnitude (dB)

Phasze (deq)

’ o' 10" 10' 10° 10°
Frequency (rad/sec)

Figure 7: Frequency response of the system in Example 2 with a lag-lead compensator

Re-converting the controller in z-domain, we get

0.2035z — 01841 /7.309z — 5.903
C(z) = 30
(2) ( = — 0.9806 ) ( z+ 0.4055 )

» Design based on root locus method

The effect of system gain and/or sampling period on the absolute and relative stability of the
closed loop system should be investigated in addition to the transient response characteristics.
Root locus method is very useful in this regard.
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The root locus method for continuous time systems can be extended to discrete time systems
without much modifications since the characteristic equation of a discrete control system is of
the same form as that of a continuous time control system.

In many LTI discrete time control systems, the characteristics equation may have either of the
following two forms.

0

1+ G(z)H(z)
0

1+ GH(z)

To combine both, let us define the characteristics equation as:

1+ L(z)=10 1)

Liz)=G(z)H(z) L(z)=GH(z) L(z)
where, or : is popularly known as the loop
pulse transfer function. From equation (1), we can write

L(z) = —1

Liz)
Since is a complex quantity it can be split into two equations by equating angles and
magnitudes of two sides. This gives us the angle and magnitude criteria as

LL(z) = :I:lSD':'{Qk +1), k=01,2...
Angle Criterion:

O
Magnitude Criterion:

The values of z that satisfy both criteria are the roots of the characteristics equation or close loop
1+ L(z)=10

poles. Before constructing the root locus, the characteristics equation should be

rearranged in the following form

(z4+ =z )(z+ z2) 2+ 2,)

o)z tm)(zip)

1+ K




Z P . .
where ‘s and 's are zeros and poles of open loop transfer function, mis the number of
zeros nis the number of poles.

» Construction Rules for Root Locus
Root locus construction rules for digital systems are same as that of continuous time systems.

1. The root locus is symmetric about real axis. Number of root locus branches equals the number
of open loop poles.

2. The root locus branches start from the open loop poles at K = 0 and ends at open loop zeros
at K = oo. In absence of open loop zeros, the locus tends to oo when K — oo. Number of branches
that tend to o is equal to difference between the number of poles and number of zeros.

3. A portion of the real axis will be a part of the root locus if the number of poles plus number of
zeros to the right of that portion is odd.

4. If there are nopen loop poles and m open loop zeros thenn - mroot locus branches tend
to oo along the straight line asymptotes drawn from a single point s = ¢ which is called centroid
of the loci.

180°(2g + 1
— Zg+ D) g=0/1,....n—m—1

g ? !
n —im

O

Angle of asymptotes

5. Breakaway (Break in) points or the points of multiple roots are the solution of the following
equation:

dK

— =10
dz

where K is expressed as a function of z from the characteristic equation. This is a necessary but
not sufficient condition. One has to check if the solutions lie on the root locus.

6. The intersection (if any) of the root locus with the imaginary axis can be determined from the
Routh array.

7. The angle of departure from a complex open loop pole is given by

0, = 180° + ¢

where is the net angle contribution of all other open loop poles and zeros to that pole.



O = E Wi — E Yi
i

J#p

7_:.'.'!- r-]_ .
's are the angles contributed by zeros and 75 are the angles contributed by the poles.

8. The angle of arrival at a complex zero is given by

¢o. = 180° — ¢

0
where is same as in the above rule.

<0
9. The gain at any point on the root locus is given by

[T;=1 120 + 5l
H:'T;l |20 + ]

K =

» Root locus diagram of digital control systems

We will first investigate the effect of controller gain K and sampling time T on the relative
stability of the closed loop system as shown in Figure 1.

r(t ' ] —e Ts .
r(t) =@ elt) X G;;,l:s,:——‘ 1me = }—» ! - ct)
T 5 s+1

Controller Z0OH Plant

Figure 1: A discrete time control system

Let us first take T=0.5 sec.



Z [Gho(s)Gols)] = Z[l_(_‘ﬂs 1 ]

e g
= —
Kz
Gp(2) = z—1
Let us assume that the controller is an integral controller, i.e., . Thus,
G(z) = Gp(z)-GrGy(2)
_ Kz 1- e’
T T
The characteristic equation can be written as
1+G(z)=0
Kz(1—eT)
= 1+ =0
(z—1)(z—eT)
0.3935K =z

when T' = 0.5sec, L(z) = (z—1)(z — 0.6065)
z — 1)(z — U.6Ubo

L(z)
has poles at z =1 and z = 0.605 and zero at z = 0.
Al B
dz
Break away/ break in points are calculated by putting

0

(z — 1)(z — 0.6065)

e

> 0.39352
dK _ 06065
dz 030352

= 22 = 0.6065 = z; = 0.7788 and 2z, = —0.7788



Critical value of K can be found out from the magnitude criterion.

0.39352 B 1
(z—1)(z — 0.6065) K
z=—1
Critical gain corresponds to point . Thus
—0.03935 B 1
(—2)(—1.6065)| ~ K
or, K = 8.165

Figure 2 shows the root locus of the system for K = 0 to K =10. Two root locus branches start
from two open loop poles at K = 0. If we further increase K one branch will go towards the zero
and the other one will tend to infinity. The blue circle represents the unit circle. Thus the stable
range of K isO < K < 8.165.

Root Locus
| 1 T 1
0.a8F T
Nl ]

.04t 1

=

< g2t 7

o

o

= 0 -« T

[#)]

[}

E -0.2f ]
=04k ]
(.6 ]
0.8k ]

-1 ! ] !
15 _a 15 -1 — & i 0.5 1.5

Heal.ﬁ.xis

Figure 2: Root Locus when T=0.5 sec

If T =1 sec,



0.6321K =

G(z) =
() = Z o1 —0.86m9)
Break away/ break in points:
22 = 0.3679 = 2z, = 0.6065 z, = —0.6065 (K.) = 4.328

and Critical gain Figure 3
shows the root locus for K = 0to K = 10. It can be seen from the figure that the3 radius of the
inside circle reduces and the maximum value of stable K also decreases to K = 4.328 .

Root Locus

08rF

06p

04f

02r

Imaginary Axis

-0.2F

—0.4F

—0.6F

0.8+

- -1.5 - 0.5 0 0.5 1.5

Re=al Axis

Figure 3: Root Locus when T=1 sec

Similarly if T = 2 sec,

0.8647K =
(z— 1)(z — 0.1353)

G(z) =

One can find that the critical gain in this case further reduces to 2.626.

» Effect of sampling period T

As can be seen from the previous example, large T has detrimental effect on relative stability. A
thumb rule is to sample eight to ten times during a cycle of the damped sinusoidal oscillation of
the output if it is underdamped. If overdamped, 8/10times during rise time.



As seen from the example making the sampling period smaller allows the critical gain to be
larger, i.e., maximum allowable gain can be made larger by increasing sampling frequency /rate.

It seems from the example that damping ratio decreases with the decrease in T. But one should
take a note that damping ratio of the closed loop poles of a digital control system indicates the
relative stability only if the sampling frequency is sufficiently high (8 to 10 times). If it is not the
case, prediction of overshoot from the damping ratio will be erroneous and in practice the
overshoot will be much higher than the predicted one.

Next, we may investigate the effect of T on the steady state error. Let us take a fixed gain K = 2.
When T = 0.5 sec. and K = 2,

0.787=

&%) = 1)z — 0.6065)

Since this is a second order system, velocity error constant will be a non zero finite quantity.

(1—271G(=2)

Kv = El_I;I} T =4
1
€on = 1= 0.25
Thus,
WhenT=1sec.and K=2
. 1.2642
G(z) = S
(z—1)(z —0.3679)
1—=27hHa

Ko —lim 472 )GG)

WhenT=2sec.and K=2



1.7294 =
(z—1)(z —0.1353)

Glz) =

1’*;1':1}_1::1I T =1
1
— —:1
EE.S 1

Thus, increasing sampling period (decreasing sampling frequency) has an adverse effect on the
steady state error as well.

» Design by using Root Locus
» Controller types: We have already studied different variants of controllers such as PI,
PD, PID etc. We know that PI controller is generally used to improve steady state
performance whereas PD controller is used to improve the relative stability or transient
response. Similarly a phase lead compensator improves the dynamic performance
whereas a lag compensator improves the steady state response.

» Pole-Zero cancellation A common practice in designing controllers in s-plane or z-plane
is to cancel the undesired poles or zeros of plant transfer function by the zeros and poles
of controller. New poles and zeros can also be added in some advantageous locations.
However, one has to keep in mind that pole-zero cancellation scheme does not always

Juw
provide satisfactory solution. Moreover, if the undesired poles are near axis, inexact
cancellation, which is almost inevitable in practice, may lead to a marginally stable or
even unstable closed loop system. For this reason one should never try to cancel an
unstable pole.
.z +a

K
_ _ z+b _
» Design Procedure: Consider a compensator of the form . It will be a lead

compensator if the zero lies on the right of the pole.

1. Calculate the desired closed loop pole pairs based on design criteria.
2. Map the s-domain poles to z-domain.
3. Check if the sampling frequency is 8 - 10 times the desired damped frequency of oscillation.

4. Calculate the angle contributions of all open loop poles and zeros to the desired closed loop
pole.

5. Compute the required contribution by the controller transfer function to satisfy angle criterion.



6. Place the controller zero in a suitable location and calculate the required angle contribution of
the controller pole.

7. Compute the location of the controller pole to provide the required angle.
8. Find out the gain K from the magnitude criterion.

The following example will illustrate the design procedure.

» An Example on Controller Design
Consider the closed loop discrete control system as shown in Figure 1 .
Figure 1: A discrete time control system

S o} T

Controller Z0OH Plant.

Design a digital controller such that the dominant closed loop poles have a damping

&E=05 t. =2 29%,
ratio and settling time sec for tolerance band. Take the sampling period
asT = 0.2 sec. The dominant pole pair in continuous domain
—&w, £ jwn/1 — & w
is where is the natural undamped frequency.
. . : 4 4
Given that setthng timet, = — = - = 2 sec.
2 Ew 0.5w
SWn n
Thus, w, = 4
Damped frequency wqg = 4vV1 = 3.46
2r
Sampling frequency wy, = — =— =314
phing | Y Ws T 0
31.4
— = 9.07
3.46
Since , We get approximately 9 samples per cycle of the damped oscillation.

The closed loop poles in s-plane
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Thus the closed loop poles in z-plane

210 = erp(T(—2 4+ 73.46))
2| = e 1% = eap(—04) = 0.67
[z = Twy=0.2 %3464 = 0.60 rad = 39.69"
Thus, 21, = 0.67/39.7° = 0.52 + j0.43

G(z) = le—e—ﬂ-i’s . ]

3 s(s+ 1)

0.02(z + 0.93)
(z—1)(z — 0.82)

Root Locus

A

Imaginary Axis

1 1 1 1 ]
g _5 4 _3

Hea_ljﬁ.xis
Figure 2: Root locus of uncompensated system

The root locus of the uncompensated system (without controller) is shown in Figure 2. It is clear
from the root locus plot that the uncompensated system is stable for a very small range of K.
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Figure 3: Pole zero map to compute angle contributions

Pole zero map of the uncompensated system is shown in Figure 3. Sum of angle contributions at

“q = 5']_ - 93 - LGIJ LE}J_ —{]93

the desired pole is ,  Where is the angle by the zero, :
0y Oy

and and are the angles contributed by the two poles, 0.82and 1 respectively.

From the pole zero map as shown in Figure 3, the angles can be calculated
f = 16.5° #, = 124.9° f, — 138.1°
as : and :

A =16.5° —124.9° — 138.1° = —246.5°
Net angle contribution is . But from angle

+180°
criterion a point will lie on root locus if the total angle contribution at that point is

_246.5° 4+ 180° = —66.5°
Angle deficiency is

Controller pulse transfer function must provide an angle of 66.5°. Thus we need a Lead
Compensator. Let us consider the following compensator.

z+a
z+b

Gplz)=K



If we place controller zero atz =0.82to cancel the pole there, we can avoid some of the
calculations involved in the design. Then the controller pole should provide an angle

124.9° — 66.5° = 558 .4°
of )

Once we know the required angle contribution of the controller pole, we can easily calculate the
pole location as follows.

z=—b
The pole location is already assumed at . Since the required angle is greater

171(0.43/0.52) = 39.6° : : :
than tan™"(0.43/0.52) = 39.6 we can easily say that the pole must lie on the right half of
the unit circle. Thus b should be negative. To satisfy angle criterion,

0.43 .
tan~! ——— = 58.4°
0.52 — |b]
0.43 .
or, ———— = tan(h8.4°) = 1.625
0.52 — |b] ( )
0.43
, 052 —|b] = = (.267
or, (.52 — |b| 76 7
or, [b| = 0.52—0.267 = 0.253
Thus, b = —0.253
z— (.82
Gplz)= K—
p(2) = K =553
The controller is then written as . The root locus of the compensated

system (with controller) is shown in Figure 4.
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Figure 4: Root locus of the compensated system

If we compare Figure 4 with Figure 2, it is evident that stable region of K is much larger for the
compensated system than the uncompensated system. Next we need to calculate K from the
magnitude criterion.

0.02K(z + 0.93
Magnitude criterion: (r ) =1
(z—0.253)(z — 1) 0524043

(z—0.253)(z — 1)

or, K = : .
0.02(z + 0.93) =0.5247043
10.52 + 70.43 — 0.253|]0.52 + j0.43 — 1 10,75
. . = 10.75
0.02(0.52 + 70.43 + 0.93|

z— 0.82

G = 10.7h ——

p(z) 0253

Thus the required controller is . The SIMULINK block to compute

the output response is shown in Figure 5. All discrete blocks in the SIMULINK model should
have same sampling period which is 0.2 sec in this example.
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Figure 5: Simulink diagram of the closed loop system

Unit - VI
State Feedback Controllers

UNIT SYLLABUS

Design of state feedback controller through pole placement — Necessary and sufficient conditions
— Ackerman’s formula.

4.1.1. Unit Objectives:
After reading this Unit, you should be able to understand:

» To study the design of state feedback control by “the pole placement method.”

4.1.2. Unit Outcomes:

» The learner understand the stability of digital control systems and how to make the unstable
system to stable. The leaner will understand about designing of systems by conventional
methods like root locus and bode plot through bilinear transformation.

The design techniques described in the preceding lectures are based on the transfer
function of a system. In this lecture we would discuss the state variable methods of designing
controllers. The advantageous of state variable method will be apparent when we design
controllers for multi input multi output systems. Moreover, transfer function methods are
applicable only for linear time invariant and initially relaxed systems.



>  State Feedback Controller

Consider the state-space model of a SISO system

x(k+1) = Ax(k)+ Bu(k) (1)
y(k) = Cx(k)
x(k) € R"
where , u(k) and y(k) are scalar. In state feedback design, the states are fedback to

the input side to place the closed poles at desired locations.

Regulation Problem: When we want the states to approach zero starting from any arbitrary initial
state, the design problem is known as regulation where the internal stability of the system, with
desired transients, is achieved. Control input:

ulk) = —Kx(k) )

Tracking Problem: When the output has to track a reference signal, the design problem is known
as tracking problem. Control input:

u(k) = —Kx(k)+ Nr(k)
where r(k) is the reference signal.

First we will discuss designing a state feedback control law using pole placement technique for
regulation problem.

By substituting the control law (2) in the system state model (1), the closed loop system
x(k+1)=(A— BK)x(k)

becomes . If Kcan be designed such that eigenvalues of A-

BK are within the unit circle then the problem of regulation will be solved.

The control problem can thus be defined as: Design a state feedback gain matrix K such that the

control law given by equation (2) places poles of the closed loop
x(k+1)=(A— BK)x(k)

system in desired locations.

A necessary and sufficient condition for arbitrary pole placement is that the pair (A,B) must be
controllable. Since the states are feedback to the input side, we assume that all the states are
measurable.



» Designing K by transforming the state model into controllable from

(pole placement technique)

The problem is first solved for the controllable canonical form. Let us denote the controllability
matrix by Uc and consider a transformation matrix T as

T = U
-an—l Qpn-2 -~ @ 1-
n3 Gp-g --- 1 0
W = -
ay 1 0 0
1 0o --- 0 0
where - 2

L
's are the coefficients of the characteristic polynomial

|2l — Al =z2"+a 2"+~ +a, 1z +a,

Define a new state vector x — T'x. This will transform the system given by (1) into
controllable canonical form, as

%(k + 1) = A%(k) + Bu(k) 3)

You should verify that

0 1 0 oo O 0

0 0 1 .. 0 0

A=TAT=| : : ¥ s & | dB=T"B=|,
0 0 0 1 1

—0p —0p—i ap_9 —ayq L

We first find K such that places poles in desired locations. Since



ulk) = —I*_L"T‘lx(k)
eigenvalues remain unaffected under similarity transformation, will
place the poles of the original system in desired locations.

also
P s PR
If poles are placed at , the desired characteristic equation can be expressed as:
(z—2z1)(z—2)...(z—2z2) = 0 (4)
or, z'4+a1z" +...+ap_1z+a, = 0
(4,B)
Since the pair are in controllable-companion form then, we have
[0 1 0 ... 0 ]
0 0 | 0
A—BK = : : 8 s :
0 0 | — 1
| —(an — k1) —(an-1— k) cor —(a1—Kq))

Please note that the characteristic equation of both original and canonical form is expressed

|zl —A| |zl —A| Z*+az" '+ ... +a,
as: = = = 0.
u=—Kx
The characteristic equation of the closed loop system with is given as:
n2 + (a, + k) =0 (®)

2 (ay k)2 b (ag R, )2t R 4L

Comparing Egs. (4) and (5), we get
(6)

k:n. — ) — . ‘E‘Tn—l = ¥z — do, kl = Oy — gy

We need to compute the transformation matrix T to find the actual gain matrix

_ I{:[El,;ﬂg,...jkn]
K = KT where .



» Designing K by Axkermann's Formula

Consider the state-space model of a SISO system given by equation (1). The control input is

u(k) = —Kx(k) (7)

Thus the closed loop system will be

x(k+1) = (A — BK)x(k) = Ax(k) (8)

Desired characteristic Equation:

2 —A+BK|=[2I-A4 = 0
or, (z—2z)(z—=)"(2—2,) = 0
or, 2"+a1z" ' +...+an-124+an = 0

A" L0 A" o, At a d =0
Using Cayley-Hamilton Theorem



Consider the case when n = 3.

A = A-BK
A’=(A-BK)*=A>- ABK — BKA— BKBK = A?>—- ABK — BKA
A =(A-BK)® = A®- A’2BK — ABKA— BKA?

We can then write

031+09A+Q]A2+As =0

or, asl+as(A— BK)+a;(A?— ABK — BKA) + A* — A°BK — ABKA—- BKA? =
or, asl + asA+ a1 A2 + A®* — asBK — a0y ABK — ayBKA — A’BK — ABKA— BKA? =

Thus
#(A4) = B(asK +a1 KA+ KA%) + AB(a K + KA) + A’BK
K + a;](’zi 4+ KA
= [B AB A’B] oK + KA
K
K + cuKti - K/ig
= Ue oK+ KA
K
o) . | | o
where is the closed loop characteristic polynomial and Uc is the controllability matrix.

Since Ucis nonsingular

as K + alK}i + K A2
Uz'¢(A) = K+ KA
K
ao K + a'lei 4+ KA?
or, [0 0 1]U;'¢(4) = [0 0 1] arK + KA
K
or, K = [0 0 1] Uz'¢(A)

Extending the above for any n,

K:[D 0 ... 1] Uglgﬁ{Aj} U= [B AB A*B ... A“_IB]
where



The above equation is popularly known as Ackermann's formula

Example 1: Find out the state feedback gain matrix K for the following system using two
different methods such that the closed loop poles are located at 0.5, 0.6 and 0.7.

o 1 0 0
x(k+1)] 0 0 1 |x(k)+ |0]ulk)
-1 -2 -3 1
Solution:
0 0 1
Uo=10 1 -3
1 -3 7

The above matrix has rank 3, so the system is controllable.

Open loop characteristic equation:
24322 42241=0
or,
Desired characteristic equation:
(z—05)(z2—-06)(z—07) = 0
or, 22 —1822+1.072—021 = 0
Since the open loop system is already in controllable canonical form, T =1.

K=las—as; ar—a; o) —a]

as=—021, as =107, ay = =18  a3=1a =2, a, =3
where, and . Thus

K=[-121 —093 —48]

Using Ackermann's formula:



o 52 =3 9 3 1
Utz =8 =1 0 =l2 1
L3l % b 1 0 0
$(A) = AP —18A2+1.07TA—0211
o B -3 0 0 -—18 0 107 0
=13 5 7|+|18 36 54 |+]| 0 0 107
7 —11 —10| |-54 —9 —106| |-107 —214 —321

—0.21 0 0
+ 0 —0.21 0
0 0 —0.21
—121 -093 438
= 4.8 8.39 13.47
—13.47 -22.14 -30.02

Thus
K = [O 0 1](,."51¢>(A

)

1
— [0 0 1] 0] ¢(A)
0

—_ W o

3
1
0

[1 0 0J¢p(A) =[-1.21 —0.93 —4.8]

Example 2: Find out the state feedback gain matrix K for the following system by converting the
system into controllable canonical form such that the closed loop poles are located at 0.5 and 0.6.

x(k+1) = [—01 :é] x(k) + H u(k)

Solution:



The above matrix has rank 2, so the system is controllable.

Open loop characteristic equation:

2 4+3242=0
or,

Desired characteristic equation:

(z—05)(z—0.6) = 0
or, 22—1.122403 = 0

. 31
H_L D]

To convert into controllable canonical form;

o =13 1] [-1 0
S i

The transformation matrix;

rar- [ 1] rn ]

—2 -3
Check:

g :—11? to :{:}3? Ly :3? (o — 2
Now,

I{ — [C}:g — 2 v — ﬂ.l] — [—1? — 41]
Thus

—1 0

K=KT'=[-17 —4.1][1 J:[_m —4.1]

We can then write

For all examples and exercise problems the system is considered as

x(k+1) = Fx(k) + Gulk)
Equation



e e OO OO Output
Equation

Examples

1 =1 1
e §1 Pl
Example: 1 Given that ,

Design a state feedback controller such that the closed loop poles are located at z=0.4 & z=0.6
Solution:

The block diagram is given by

e xy(kp
UL") Real Time System =2 -
(F&G) _ 3
A
A - \jl < 4

@

- /Q -

From the adjoining block diagram we have

e

e (k)i| =—kyx (k) — k,x, (k)

u(k)=—[

The characteristic equation of the poles located at 0.4 and 0.6 is

(z-04(z-06)=0
22— z4024=0

From the standard characteristic equation of closed loop poles, we have

0,(z) = |zl — (F - G| = 0



<o 2HG O
[ MG J[ in=o

z 0 [(1-k -
=5 —
O z L _kl
-1+ 1+k
- z ] 2 2o

=[(z-1+k) *(z-14+k) |- [ (1+ k)] =0

= (z- 0 +i(z— D+ (z— 1)tk — ke — gk, = 0
=z = 22414 (kg +k)z —k, — 2k, =0

=z (g +k -2z +(~2k —k,+1)=0

On comparison with standard equation, we get

=k +k—2=-1
=k 4k =1
=k =1-k,
~ 2k, —k, +1=0.24

—2(1—k,)—k, ==0.76
—2+ 2k, —k, = —0.76
k, =124
=1k

b =1-1.24=-0.24

k= [-0.24 1.24]

These values of the system gain represent the two controller parameters which are feedback to
reference input. Finally the matrix form of the state feedback gain of the controller is given
above respectfully.

Example 3: Given that



Determine the state feedback gain by using Ackermann's Formula.

Solution:

75 3)e=(}

Here the order (n) of F matrix is n=2

c =[G FG]

i3
A
11
o)
=y Adjnie) [cofact(c)]r _ 0 1

I Fl ! =[-11 ?]

Qi F) = F e P e, (P +e,F4el=0

From the characteristic equation we get
P;(z)= 22—z +0.247
Substitute z = F we have

Q,(F)=F - F+024]
F2_1 -1 -1y (1 =2
o 1t flo 1) lo 1

F_1—2_1—1+o.24 0
Q“’()‘o 1 0 1 0 024

0.24 -1 J

S e Y

By Ackermann's formula state feedback gain is given by

k=[0.. 1]e™'0,(#)



(1 0][0.24 —1J
=y -1 ULo o2

024 -1 ]

(= [11] ( 0 024

k =[-0.24 1.24]
Problem 1: Given that

) o)

Design a state feedback controller such that the closed loop poles are located at z=0.6 + 0.4 .

Problem 2: The F and G matrices are given below

-02 056 0
F = G —
05 -01 1
Design a state feedback controller using the transformation matrix that transforms the system
into controllable canonical form in such a way that closed loop poles are locatedat z=0.2 & z

=0.8.

Problem 3: Following F and G matrices of order 2 are given by

s Jo()

Determine the state feedback gain by using Ackermann's Formula.
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Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B
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PART-A (14 Marks)

What is meant by impulse sampler?

What is the z-transform of sin wt?

Explain the concept of controllability.

Write comment on the stability of F(z) = z2 —0.25 = 0 by using Jury’s
stability criterion?

List out the transient response specifications.

Write statement on necessary condition for design of state feedback controller
through pole placement?

PART-B (4x14 = 56 Marks)

List out the applications where DCS are used? Explain any one of them in detail.
Explain the frequency domain characteristics of zero order hold with neat
schematic.

The input-output of a sampled data system is described by the difference
equation y(k +2) + 3y(k+ 1) + 4y(k) =r(k+ 1) —r(k); y(0) =y(1) =0
r(0) = 0, Determine pulse transfer function. Also obtain the unit pulse response
of the system.

Find the inverse z-transform of F(z) = 2(z+1)

D@ 2D by using partial fraction

expansion method.

0.1 0.1 0
Obtain the inverse of the matrix (ZI — G) where G = (0.3 -0.1 —0.2) also
0 0 -03
obtain G*.
Consider the following system
y(z) z+1
u(z) z2+4+13z+04
Obtain (i) Controllable canonical form (ii) Observable canonical form (iii)
Diagonal form.

Draw the Jury’s table, write its necessary and sufficient conditions.

Consider the following characteristic equation

F(z) = z% — 1.3z2 — 0.08z + 0.24 = 0, Determine whether or not any of the
roots of the characteristic equation lie outside the unit circle in the z-plane. Use
modified Routh’s stability criterion.

1lof2
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70

[2]
[2]
[2]

[3]
[2]

[3]

[7]
[7]

[7]

[7]

[7]
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a)

a)

Write design procedure in the w-plane. [7]
A unity feedback system is characterized by the open loop transfer function
CoC 0.2385(z + 0.8760)
w62 = Z = 02649)
The sampling period T=0.2 sec, Determine steady state errors for following
(i) Unit Step (ii) Unit ramp (iii) Unit Parabolic. [7]

Derive the Ackermann’s formula for state feedback gain matrix. [4]
Consider the system
X(k+1) =G6X(k) + Hu(k)

0 1 0 0
G =[ 0 0 1[;H = 0]
—-0.12 -0.01 1 1
Determine a suitable state feedback gain matrix ‘K’ such that the system will
have the closed loop poles at 0.3, 0.4, 0.6. [10]
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b)
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Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B

*kkkik

PART-A (14 Marks)

Write a statement of sampling theorem. [2]
What is the z-transform of te=%? [2]
Explain the concept of observability. [2]
Write about the primary strips and complementary strips with neat schematic. [2]
Derive an expression for steady state error for step input. [3]
Write statement on sufficient condition for design of state feedback controller

through pole placement. [3]

PART-B (4x14 = 56 Marks)

Derive the transfer function of zero order hold. [7]
Explain the block diagram representation of the sample and hold devices. [7]
For the sampled data system as shown in figure.3 given below, find (i) Pulse

transfer function % (ii) Output y (k) for r(t) = unit step (t = 1 sec).

TR o W) Ylt)

Figure.3 [14]

v (2) _ z+1 . -
@ = Frsr0is Obtain (i) Controllable

canonical form (ii) Observable canonical form (iii) Diagonal form. [7]

Consider the following system

Consider the following pulse transfer function system
y(z) z71(1+0.8z71)
u(z) 1+13z71+0.4z72
Test the state controllability and observability. [7]

Consider the following characteristic equation z3 + 2.1z + 1.44z + 0.32 = 0,
Determine whether or not any of the roots of the characteristic equation lie

outside the unit circle centered at the origin of the z-plane. [7]
Determine the stability of the following discrete time system

y(2) _ z7

x(z) 1405z 1—1.34z2 + 0.24z3 [7]

1lof2
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a)

b)

Write about the general rules for constructing Root Loci.
The feed forward pulse transfer function is given

Kz(1—e™")
(z-1D(z—-eT)
Investigate the effect of the sampling period T on the steady state accuracy of
the unit ramp response for the following (i) T=0.5 Sec, K=2 (ii) T=1 Sec, K=2
(iii) T=2 Sec, K=2. Write comment on the above cases.

G(z) =

Derive necessary condition for the design of state feedback controller through
pole placement.
A regulator system has the plant

X+ D= (Lo )XW+ ()

Design a full order state observer, the desired eigen values of the observer
matrix are -1.8-j2.4, -1.8+j2.4.

20f2
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Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B
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PART-A (14 Marks)
Write the DCS example of a digital computer controlled rolling mill regulating

system. [3]
What is the z-transform of cos wt? [2]
Write the diagonal canonical form. [2]
Investigate the mapping from s-plane to z-plane of the constant frequency loci

with neat sketch. [2]
Derive an expression for steady state error for ramp input. [3]
What is the purpose of an observer? [2]

PART-B (4x14 = 56 Marks)

List out the merits of digital systems. [4]
State and explain sampling theorem with neat sketch. [10]

Solve the difference equation
y(k +2) +3y(k + 1) + 2y(k) = r(k);
r(k) = unit step,y(0) = 1land y(1) =0 [7]
-2

Obtain the inverse z-transform of x(z) = Ty 7]

What are the various methods of evaluation of state transition matrix? Explain
any one method. [7]
Obtain the state equation and output equation for the system defined by

y(z) z7 145772

u(z) 144z 1+ 3z°2 [7]

Write about the modified Routh’s stability criterion. [7]
Consider the system described by

y(k) —0.6y(k —1) — 0.81y(k — 2) + 0.67y(k — 3) — 0.12y(k — 4) = x(k)
Where x(Kk) is the input and y(k) is the output of the system. Determine the
stability of the system by using Jury’s stability criterion. [7]

1lof2
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6.

b)

Consider the system as shown in figure.6. Assume that the digital controller is of
the integral type.

Y(t)

n G5~5.J G h (s) Gip ()
Cont 7‘0“&1

R(2)

A PO Sl <=t
Figure.6

Draw root locus diagram for the system of the sampling period T=0.5. Also

determine the critical value of K for T=0.5. Locate the closed loop poles

corresponding to K=2 for T=0.5.

Derive sufficient condition for the design of state feedback controller through pole
placement.
Consider the system is given by

0 1 0 0
X(k+1)=<0 0 1>(k)+<0>u(k)

-1 -2 =3 1
Determine a suitable state feedback gain matrix ‘K’ to place the eigen values at
0.5,0.6,0.7.

20f2
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Question paper consists of Part-A and Part-B
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PART-A (14 Marks)

a) Enumerate advantages of digital systems.
b) Define z-transform and write z transform of unit step function.
c) Write the Jordan canonical form.

Max. Marks: 70

d) Write comment on the stability of P(z) = z%> — 0.25 = 0 by using modified

Routh’s stability criterion.
e) Derive an expression for steady state error for parabolic input.
f) What is reduced order observer?

PART-B (4x14 = 56 Marks)

Draw and explain the configuration of the basic digital control systems with neat

block diagram.

a) State and explain the initial value and final value theorem.

[2]
[2]
[2]

[3]
[3]
[2]

[14]

b) Using the inversion integral method, obtain the inverse z-transform of x(z) =

10 _
Do 2 ork=0.1.23.......

a) Obtain the state and output equation of discretization of continuous time state

equation.

b) Obtain the state transition matrix of the following discrete time system

x(k+1) = Gx(k) + Hu(k)

y(k) = Cx(k)
Where
6=[ g1 lH=[]c=0r 0

a) Investigate the mapping between the s-plane and the z-plane with neat schematic.
b) Consider the discrete time unity feedback control system (T=1 sec) whose open

loop pulse transfer function is given by G(2) = K(O 3679240, 2642) Determine the

~0.3679)(z—
range of K for stability by use of the Jury’s stablhty test

1lof2
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b)

Consider the digital control system shown in figure.6. Design a digital controller
in the w-plane such that the phase margin is 50°, the gain margin is at least 10 dB,
and the static velocity error constant K, is 2 sce™. Assume that the sampling
period is 0.2 sec.

¢(t)

i N N g N
R(2) gy B
Grp (D)
Figure.6

Explain the full order observer with neat block diagram and also write its error
dynamics of the full order state observer.
Consider the system is given by

xe+ =2 Dyxwo+()uw

Obtain the state feedback gains ‘K’ to place the eigen values at 0.1, 0.2 using
Ackermann’’s formula.

20f2
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Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any THREE questions from Part-B
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PART-A (22 Marks)
Briefly explain the basic components of a digital control system.
What is shifting theorem of z-transforms?
What are the advantages of state space approach compared to conventional
approach in system analysis?
What are Primary strips and Complementary Strips?
Explain the need for compensation in digital control systems.
What is pole placement by state feedback?

PART-B (3x16 = 48 Marks)
Explain the merits and demerits of digital control systems compared to analog
control systems.
Derive the transfer function of zero order hold device.

Obtain the pulse transfer function of the system G(s) = 1e

Find the inverse Z-Transform of the following:
, _ z—4 .. _ z?
(l) F(Z) T (z-1)(z-2)2 (”) F(Z) T (z-1)(z-02)

Obtain the state transition matrix of the following discrete time systems
X(k+ 1) = GX(k) + Hu(k)

I [—0916 —11]'H = [ﬂ

Consider the following pulse transfer function system:
Y(z)  z'(1+08z71)

U(z) 1+1.3z71+0.4z2
Test the state controllability and observability.

Determine the stability of the following characteristic equation by using suitable
tests. z'—1.7z°+1.04z°-0.268z + 0.024 = 0.

With an example explain the stability analysis using Modified routh’s stability
criterion.

Kz(1—e™T)
—T):o, Draw

The characteristics equation of a discrete time system is 1 + e D—e

the root locus for T=0.5 sec.

Explain the transient response specifications with reference to unit step response
of discrete time response.
1of2
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7. a) Consider the following system
X(k +1) = GX(k) + Hu(k)

where G = [—0916 —11]'H = [(1)]

Determine a state feedback controller K to place the closed loop poles at []
z=0.5%j0.5.

b) What is the necessary and sufficient condition for arbitrary pole-placement?
Prove the sufficiency of the condition. [8]

20f2
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Answer ALL sub questions from Part-A
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PART-A (22 Marks)
1. a) What are the disadvantages of digital control systems over analog systems?

Find the inverse Z-transform of
(z—a)?

c) What are the properties of State transition matrix?

d) Distinguish between Routh’s criterion and Modified Routh’s stability criterion.

e) List out the steady state specifications.

f) How is state feedback controller useful for pole placement?

PART-B (3x16 = 48 Marks)
2. a) Describe any two examples of digital control system.
b) Explain the Frequency domain characteristics of zero order hold.

3. a) State and explain the following theorems of z-transforms:

(1) Initial value theorem (i) Final Value theorem
b) The pulse transfer function of digital control systems is given by
5z
G(2) - z2+43z+2

Find the complete solution to a unit step input and assume that, the initial
conditions are zero.

4. a) Consider the system defined by
xq (k + 1)] _[a b [xl(k) 1
[xz(k +1)| 7  dl %, T []uo
x1 (k)
w=0 ol
Determine the conditions on a,b,c and d for complete state controllability and
complete observability.
b) Obtain the state transition matrix of the following discrete time system:
x(k+1) =Gx(k) + Hu(k)
y(k) = Cx(k)
Where

10 1 o~
6=2, Slu=[lc=nn a
5. a) Explain the mapping between S-plane and Z-plane.
b) Write down the rules in Jury stability criterion.

lof2
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6.

a)
b)

a)
b)

Explain the design procedure for Lag —Lead compensator in o-plane. [8]
Explain the angle and magnitude conditions for the characteristic equation

1+G(z)H(z)=0 for drawing root locus. [8]
Derive ‘Ackerman’s formula’ for pole placement. [8]

Consider the following system
X(k + 1) = GX(k) + Hu(k)

where 6 = [y 7)1 =[G

Determine a state feedback controller K to place the closed loop poles at []
2=0.6£j0.4.

20f2
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PART-A (22 Marks)

1. a) Write down the advantages of digital control systems over analog systems. [4]
b) Obtain the z-transform of sin wt. [3]
c) Explain the concept of observability. [4]
d) Write the mapping points between S-Plane and Z-plane. [4]

e) Write the general form of transfer functions for (i) Lead compensator and (ii)
Lag compensator. [3]

f) Draw the block diagram of a closed loop discrete time system that uses state
feedback controller for pole placement. [4]

PART-B (3x16 = 48 Marks)
2. a) Draw and explain the general block diagram of discrete data control system. [8]
b) Explain how a zero order hold helps in data reconstruction. [8]

3. a) Using z-transforms solve the equation given below

x(k+2)+3x(k+1)+2x(k) =0,x(0)=0,x(1) =1 [8]
b) Explain the procedure for obtaining the pulse transfer function of a closed loop
transfer function. [8]
4. a) What is state transition matrix? What are its properties? [6]
b) Given the following state model of the system
0 1 0 1 0
Xk+1)=|0 0 1|X(k)+|0 1|UK)
-2 —40 —13 " -1 1
vao=[; , 7 lx 10
Obtain the state transition matrix. [10]
5. a) Examine the stability of the following characteristic equation using jury
stability analysis. P(Z2)=2*-1.27%+0.07Z?+0.32-0.08 = 0 [8]
b) Explain stability analysis using bilinear transformation and Routh stability
criterion. [8]

1of2
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6. a) Explain the design procedure in the ® - plane of lead compensator.
b) A block diagram of a digital control system is shown in figure, Draw the root
locus for sampling period T=0.4 sec.

r 1_e—sT K y
s(s+2)

v

A 4

A 4

T=0.4 sec

Figure

7. a) State and prove the necessary condition for arbitrary pole-placement?
b) Consider the following system
X(k+1) = GX(k) + Hu(k)

where G = [é Oiz] H= [06922]

Determine a state feedback controller K to place the closed loop poles at
z=0.4+j0.6.

20f2
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e)
f)

b)
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DIGITAL CONTROL SYSTEMS
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Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any THREE questions from Part-B
*kkkk

PART-A (22 Marks)
What is sampling theorem? What is its importance?
State initial and final value theorems.
Explain the concept of controllability.
Explain the mapping between S-plane and Z-plane.
Write the expressions for static position error constant and steady state error in
response to a unit step input in discrete time systems.
Explain ‘Ackerman’s formula’ for pole placement.

PART-B (3x16 = 48 Marks)
Explain in detail the process of sampling and reconstruction of signals.
Draw the schematic diagram of basic discrete data control system and explain the
same.

Find inverse z —transform of (i) (Z+1a)2 (i) (2:1)2

Explain the procedure for obtaining the pulse transfer function of open loop
transfer function.

Derive an expression to find the state transition matrix of a discrete system.
Obtain the discrete time state and output equations of the following continuous
time system. X = AX + bu; Y = CX where A = [8 _12];b = [g] C=1[1 0]

Explain the mapping procedure for the following from s-plane to z-plane

(i) The constant damping loci (i) The constant frequency loci
Use the Routh-Hurwitz criterion to find the stable range of K for the closed loop
K(z-1)

unity feedback system with loop gain F(z) = .
Y y P9 (@) (z-0.1)(z-0.8)

Consider the digital control system shown in figure, where the plant transfer
function is siz Design a digital controller in the w-plane such that the phase
margin is 50° and the gain margin is atleast 10 dB. The sampling period is 0.1

sec.
r(t) 1-e 1 S(t)
>§ Gl g >
R(2) S C(z)
.

Figure
1of2

Max. Marks: 70
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a)

b)

Explain the step by step procedure of pole placement by state feedback in
discrete systems. [8]
Consider the following system

X(k +1) = GX(k) + Hu(k)

where G = [(1) Oiz] H= 06922]

Determine a state feedback controller K to place the closed loop poles at [8]
z=0.3%j0.3.

20f2
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