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Unit – I – introduction to signal processing 

UNIT – I:  
Introduction and signal processing  
Introduction to analog and digital control systems – Advantages of digital systems – Typical 

examples – Signals and processing – Sample and hold devices – Sampling theorem and data 

reconstruction – Frequency domain characteristics of zero order hold. 
 

Unit Objectives: 

After reading this Unit, you should be able to understand: 

 To understand the concepts of digital control systems and assemble various components 

associated with it. Advantages compared to the analog type. 
 

Unit Outcomes: 

 The students learn the advantages of discrete time control systems and the “know how” of 

various associated accessories.  

 

FUNDAMENTALS OF DIGITAL CONTROL SYSTEMS 

The analysis of linear control system is based on the fact that the signals at various points 

in the system are continuous with respect to time. However, in some applications it is convenient 

to use any one or more control signals at discrete time intervals of time, for example in some 

industrial process control applications the signal is available only in sampled data form as a 

sequence of pulses. The control system using one or more signals at discrete time intervals are 

known as sampled data or digital or discrete time control systems. Digital controllers are used for 

achieving optimal performance-for example, in the form of maximum productivity, maximum 

profit, minimum cost or minimum energy use. 

Generally, the controllers are used in control system to modify the error signal for better 

control action. The controllers are classified into two types 

1. Analog controllers 

2. Digital controllers 

Analog controllers: 

 These are constructed using analog elements and their i/p and o/p are analog signals, which are 

continuous function of time. 



 Complex, costlier and once fabricated, it is difficult to alter the controllers. 

Digital controllers: 

 These are constructed using non-programmable devices, microprocessor based systems or 

computer based systems. 

 These are used complex and time shared control functions 

 Simple, versatile, programmable, fast acting and less costly. 

 It is easy to alter the control functions by modifying the program instructions. 

CONTINUOUS TIME VERSUS DISCRETE TIME CONTROL SYSTEMS 

If all the system variables of a control system are functions of time, it is termed as a 

continuous time control system 

Ex: The speed control of a d.c motor with tacho-generator feedback. 

If one or more system variables of control system are known at a certain discrete time, it is 

timed as a discrete time control system. 

Ex: The microprocessor or computer based system. 

The i/p and o/p signals of discrete time systems are digital or discrete, but the i/p and o/p 

signals of continuous time systems are analog or continuous time signals. Continuous time 

systems, whose signals are continuous in time, may be described by differential equations where 

as in discrete time systems the signals are digital signal or sampled data signals may be described 

by difference equations. 

BLOCK-DIAGRAM OF A DIGITAL CONTROL SYSTEM 

A control system which uses a digital computer as a controller or compensator is known 

as digital control system. The advantages of using a digital computer for compensation include: 

accuracy, reliability, economy and most importantly, flexibility. 

A block diagram of a digital control system is shown in the fig.(2.1). The basic elements of 

the system are shown by the blocks. The controller operation is controlled by clock. The input and 

output signal in a digital computer will be will be digital signal, but the error signal (input to the 

controller) to be modified by the controller and the control signal (output of the controller) to drive 

the plant are analog in nature. Hence a sample and hold circuit and an analog to digital converter 

(ADC) are provided at the digital computer input. A digital to analog converter (DAC) and a hold 

circuit are provided at the digital computer output. 



 

Fig.(2.1): Block-diagram of a digital control system 

The sampler (S/H circuit) converts the continuous time error signal into a sequence of 

pulses and ADC produces binary code (binary number) of each sample. These codes are input data 

to the digital computer which process the binary code by means of an algorithm and produces 

another stream of binary codes as output. The DAC and hold circuit converts the output binary 

code to continuous time signal (analog signal), called control signal is fed to the plant, either 

directly or through an actuator to drive the plant (or to control its dynamics). 

The operation that transforms continuous time signals into discrete-time data is called 

sampling or Discretization or encoding. The inverse operation, the operation that transform 

discrete time data into a continuous time signal is called data hold or decoding; it amounts to a 

reconstruction of a continuous time signal from the sequence of discrete time data. The function 

of each block in the block diagram is given below 

Lecture-2 

Sample and hold circuit: Sample and hold circuit is a general term used for sample and hold 

amplifier. It describes a circuit that receives an analog input signal and holds this signal at a 

constant value for a specified period of time. Usually the signal is electrical, but other forms are 

possible such as optical and mechanical. 

 

Analog to digital converter (ADC): An analog to digital converter, also called an encoder, is a 

device that converts an analog signal into a digital signal, usually a numerically coded signal. Such 

a converter is needed as an interface between an analog component and a digital component. A 

sample and hold circuit is often an integral part of a commercially available A/D converter. 

The operation of A/D conversion can be explained by the following block diagrams. The 



A/D conversion operation is carried out in three stages: sample and hold, quantization and encoding. 

 

Fig.(2.2): A/D Conversion 

 

Digital to analog converter (DAC): A digital to analog converter, also called as a decoder, is a 

device that converts a digital signal into an analog signal. Such a converter is needed as an 

interface between a digital component and an analog component. 

The operation of D/A conversion can be explained by the following block diagrams. Two 

stages are involved in the D/A conversion process: decoding and holding. 

 

Fig.(2.3): D/A Conversion 

 

Plant or process:A plant is any physical object to be controlled, such as a furnace, a chemical 

reactor and a set of mechanical parts functioning together to perform a particular operation, 

such as a servo system or a space craft. 

A process is generally defined as a progressive operation or development marked by a 

series of gradual changes that succeed one another in a relatively fixed way and lead towards a 

particular result or end. 

Transducer: A transducer is a device that converts an input signal into an output signal of 

another form, such as a device that converts a pressure signal into a voltage output. The output 

signal in general, depends on past history of the input. Transducers may be classified as analog 

transducers and sampled-data transducers or digital transducers. 

ADVANTAGES & DISADVANTAGES OF DIGITAL CONTROL SYSTEM 

Advantages of Digital Control System: 

 The advantages of digital control system are listed below: 

 Digital components are less susceptible to ageing and environmental variations. 

 They are less sensitive to noise and disturbance. 



 Digital processors are more compact and light weight. 

 They are highly accurate, fast and flexible and more reliable. 

 They are growing cheaper in cost. 

 Provide high sensitivity to parameter variations. 

 Allow more flexibility in programming without   an alternation in hardware. 

 Digital coded signals can be stored, transmitted, retransmitted, detected, analyzed or 

processed as desired. 

 They are more reliable. 

 

Disadvantages of Digital Control System: 

Some of the disadvantages of digital control systems are as follows: 

 Conversion of analog signals into discrete time signals and reconstruction introduces 

noise and errors in the signal. 

 Limitations on computing speed and signal resolution. 

 Time delays caused in the control loops due to the limitation on computing speed. 

 System instability as limit cycles in the closed loop due the finite word length of the 

processor. 

Application of Digital Control System: 

Telecommunications 

 Multiplexing 

 Compression 

 Echo control 

Audio Processing 

 Music 

 Speech generation 

 Speech recognition 

 

Echo Location 

 Radar 

 Sonar 

 Reflection seismology 

Image Processing 



 Medical 

 Space 

 Commercial Imaging Products 

 

EXAMPLES OF DIGITAL CONTROL SYSTEMS 
 

Open-Loop Control System (No feedback) 
 

Feedback 
 

Feedback is a key tool that can be used to modify the behavior of a system. This behavior  

altering effect of feedback is a key mechanism that control engineers exploit deliberately to 

achieve the objective of acting on a system to ensure that the desired performance specifications 

are achieved. 

Closed-Loop Control System (with feedback) 
 

Examples Digital Control System 
 

Temperature Control System ( Heater or Air Condition ): 
 



 
 

Autopilot Control System 
 

       

Missile Launcher 

System  

(a) Automobile steering control system. 
(b) The driver uses the difference between the actual and the desired direction of travel to 
generate a controlled adjustment of the steering wheel. 
(c) Typical direction-of-travel response 

 
A three axis control system for inspecting individual semi conductor wafers with a highly 

sensitive camera. 



 

 

 
Automobile steering control of a Car 

 
 

SAMPLING PROCESS 

 Sampling is the conversion of continuous time signal into a discrete time signal obtained by 

taking samples of continuous time signal at discrete time instants. A sampling process is used 

whenever a control system involves a digital controller, since a sampling operation and quantization 

are necessary to enter data into such a controller. Fig.(2.22) shows a switch being used as a sampler. 

The input to the switch is a  continuous time signal denoted by f(t) as shown in fig.2.22(b). The 

switch is closed for a short duration of time say p, and then remains open for some duration of time. 

This operation is repeated with ‘T’ called sampling period or sampling interval. The reciprocal of T 

i.e.Fs  =2/T is called sampling rate or sampling frequency. The switch output appears only for the 

closing duration (p) of switch. The signal f(t) is thus sampled at regular intervals of time as shown in 

fig.2.22(c).The sampled signal is denoted as f * (t) or f(kT) meaning that f * (t) is obtained after 

sampling the input signal f(t) at regular intervals of time. 

 

 



 

Fig.(2.22): Sampling of an analog signal 
 

A practical sampler acts like a switch closing every T seconds for a short duration of p 

seconds. Therefore, sampled signal can represented as follows: 

 



 
  

  

TYPES OF SAMPLING OPERATIONS 
 

A sampling operation is the process of transforming a continuous time signal into discrete time 

signal. The different types of sampling operations are: 

 Periodic sampling: In this case, the sampling instants are equally spaced or ts = kT 

(k=0,2,2……….). It is the most conventional type of sampling operation. 

 Multiple order sampling: The difference between two consecutive sampling instants is 

repeated periodically. (or) A particular sampling pattern (t k ) is repeated periodically i.e. 

(tk+2-tk  ) is constant for all k. 

 Multiple rate sampling:  In  this  sampling two  simultaneous  sampling operations  with 

different time periods carried out on the signal to produce the sampled output. Thus, a digital control 

system may have different sampling periods in different feedback paths or may have multiple 

sampling rates 



 Random sampling: In this case, the sampling instants are random or tk is a random 

variable. 

 

HOLD DEVICE 

The function of hold device is to convert sampled signal into continuous signal. The 

values of continuous time signal in between the sampling instants are calculated by  

extrapolation. The sampled signal provided by the sampling process is weighted impulse train of 

x*(t) which is being the input signal to the system transfer function. The system output is also an 

impulse train, the envelop of which gives the output, x*(t)  or x(kT) at the sampling instants  

only as shown in fig.(2.23).The original signal is reconstructed from the sampled signal by using 

hold circuit. 

 

Fig.(2.23): Sampled data control system- i/p and o/p 

The hold circuit brings smoothness in the sampled output. At the sampling instants the 

hold signal and the original signal have the same value. The use of the hold circuit enables to 

hold the signal between two consecutive sampling instants at the preceded value till the next 

sampling instant is reached. 

SAMPLING AND HOLDING PROCESS 

   The basic concept of the sample and hold circuit is shown in figure 

 

Fig.(2.24): Sample and hold circuit S/H 



The sample and hold is connected to the input of ADC. When the electronic switch (FET 

transistor) is closed the capacitor voltage will track the input voltage. T some time, when a 

conversion of the input signal is desired, the electronic switch is opened, isolating the capacitor 

from the input signal. Thus, the capacitor will hold (be charged) to the voltage when the switch 

was closed. The voltage follower allows this voltage to be impressed upon the ADC input, but 

the capacitor does not discharge because of very high input impedance of the follower. The start 

convert is then is then issued, and the conversion proceeds with the input voltage remaining 

constant from the capacitor. When the conversion is complete the electronic switch is reclosed to 

capture a new sample and the above sequence is repeated. 

 

Sampling Theorem: 

The Sampling Theorem states that “a signal can be exactly reproduced if it is sampled at a 

frequency f, where f is greater than twice the maximum frequency in the signal.” 

The signals that are used in the real world such as our voices, electrical signals, noise 

signals etc., are called "analog" signals. To process these signals in computers, we need to 

convert the signals into "digital" form. An analog signal is continuous in both time and 

amplitude; where as a digital signal is discrete in both time and amplitude. To convert a signal 

from continuous time to discrete time, a process called sampling is used. The value of the signal 

is measured at certain intervals in time and the measurement referred to a sample. 

When the continuous analog signal is sampled at a frequency f, the resulting discrete 

signal has more frequency components than the analog signal. To be precise, the frequency 

components of the analog signal are repeated at the sample rate, i.e., in the discrete frequency 

response they are seen  at  their original position, and are  also  seen  centered  around        f , and 

around 2 f   and so on. 

 

If the signal contains high frequency components, we need to sample it at a higher rate to 

avoid losing information in the signal. In general, to preserve the full information in the signal, it 

is necessary to sample at twice the maximum frequency of the signal. This is known as the 

Nyquist rate. 

Aliasing Effect: 

 

When the signal is converted back into a continuous time signal, it will exhibit a 

phenomenon called aliasing. Aliasing is the presence of unwanted components in the 

reconstructed signal. These components were not present when the original signal was sampled. 

In addition to this some of the frequencies in the original signal may be lost in the reconstructed 



signal. 

 

Aliasing occurs because signal frequencies can overlap if the sampling frequency is too low. 

Frequencies "fold" around half the sampling frequency. So this frequency is often referred  to as 

the folding frequency.Sometimes the highest frequency components of a signal are simply noise, 

or do not contain useful information. To prevent aliasing of these frequencies, we can filter out 

these components before sampling the signal. Because we are filtering out high frequency 

components and letting lower frequency components through, this is known as low-pass filtering 

 

 

ZERO ORDER HOLD (ZOH) 

The hold circuit holds the o/p signal at a fixed level between two consecutive sampling 

instants such that the slope of the hold circuit o/p signal is zero, in other words, hold signal is 

zeroith derivative of an impulse signal. Such a hold device is called zero order hold (ZOH). It is 

also known as   box-car generator. 

 

Fig.(2.25) 



Transfer Function of ZOH: 

Fig.(2.26) 

In Fig.(2.25) shows an unit impulse i/p given to a ZOH circuit, which holds the i/p signal 

for a duration T and therefore, the o/p appears to be a unit step function till duration T. As the o/p 

of ZOH is a unit step function appearing up to time T, the same can be written as 

h(t)=u(t)-u(t-T) 

Taking Laplace transforms on both sides 

L[h (t)] =L[u (t)]-L[u (t-T)] 
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As the  input  to ZOH is (t) i.e. unit impulse function, the Laplace transform of the input is 

L[ (t)]=2 

 The transfer function of ZOH is given by 
 

 

 

 



 

 
The frequency response characteristic consists of magnitude response and phase response 

characteristics, which can be obtained from the eqns. (2.24) and (2.25) respectively. The 

following fig. (2.27) shows the frequency response curve of ZOH device. From the frequency 

response curve we can conclude that ZOH device has low-pass filtering 



characteristics.  

Fig.(2.27): Frequency response of ZOH 

 

Unit – II 

Z-Transformations 

Z–Transforms – Theorems – Finding inverse z–transforms – Formulation of difference equations 

and solving – Block diagram representation – Pulse transfer functions and finding open loop and 

closed loop responses 

Unit Objectives: 

After reading this Unit, you should be able to understand: 

 The theory of z–transformations and application for the mathematical analysis of digital control 

systems 

Unit Outcomes: 

 The learner understands z–transformations and their role in the mathematical analysis of 

different systems (like Laplace transforms in analog systems).  

 

 

 

A mathematical tool commonly used for the analysis and synthesis of the discrete time 

systems is the z-transform. The role of the z-transform in discrete time systems is similar to that 

of the Laplace transform in continuous time systems. The z-transform provides a method for the 

analysis of the discrete time systems in the frequency domain than its time domain analysis. 

In a linear discrete time control system, a linear difference equation characterizes the 



 

 

dynamics of the system. To determine the system’s response to a given input, such a difference 

equation must be solved. With the z-transform method, the solution’s to the linear difference 

equation become algebraic in nature. 

3.2. THE Z-TRANSFORM 

The z-transform method is an operational method that is very powerful when working 

with discrete time systems. For a given sequence values of f(kT), its z-transform is defined by 

F(z) and is given by 

 

Where ‘z’ is a complex variable. 

The sequence of the above equation is considered to be two sided and the transform is 

called two-sided z-transform, since the time index k is defined for both positive and negative 

values. If the sequence f(kT) is one sided sequence [i.e. f(kT) is defined only for the positive 

values of k] than the z-transform is called one sided z-transform. 

The one sided z-transform of the f(kT) is defined as 
 

 

3.3. Z-TRANSFORMS OF SOME STANDARD FUNCTIONS 

(i) Unit step function: Consider the unit step function 
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(ii) Cosine function: consider the cosine function 
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(iii) f(k) = k
P
, P being a positive integer 

 

 Inverse Z-transforms 

Single sided Laplace transform and its inverse make a unique pair, i.e., if F(s) is the Laplace 

transform of f(t), then f(t) is the inverse Laplace transform of F(s). But the same is not true for Z-

transform. Say f(t) is the continuous time function whose Z-transform is F(z). Then the inverse 

transform is not necessarily equal to f(t), rather it is equal to f(kT) which is equal to f(t) only at 

the sampling instants. Once f(t) is sampled by an the ideal sampler, the information between the 

sampling instants is totally lost and we cannot recover actual f(t) from F(z). 

 
The transform can be obtained by using  

1. Partial fraction expansion  

 

2. Power series  

 

3. Inverse formula.  

 

The Inverse Z-transform formula is given as: 



 

2.4 Other Z-transform properties 

Partial differentiation theorem: 

 

 

Real convolution theorem:  

 

If f1(t) and f2(t) have z-transforms F1(z) and F2(z) and f1(t) = 0 = f2(t) for t < 0, then 

 

Complex convolution: 

 

 

 circle / closed path in z-plane which lie in the region   

: radius of convergence of   

: radius of convergence of  

 2.5 Limitation of Z-transform method 

Ideal sampler assumption  

 z-transform represents the function only at sampling instants.  

Non uniqueness of z-transform.  



Accuracy depends on the magnitude of the sampling frequency  relative to the highest 

frequency component contained in the function f(t).  

A good approximation of f(t) can only be interpolated from f(kT), the inverse z-transform ofF(z), 

by connecting f(kT) with a smooth curve. 

 

 Application of Z-transform in solving Difference Equation 

One of the most important applications of Z-transform is in the solution of linear difference 

equations. Let us consider that a discrete time system is described by the following difference 

equation. 

 

The initial conditions are y(0) = 0, y(1) = 0 .  

We have to find the solution y(k) for k > 0.  

 

Taking z-transform on both sides of the above equation:  

 

Using partial fraction expansion:  

 

 

 

  

Taking Inverse Laplace:   

 

  

 

To emphasize the fact that y(k) = 0 for k < 0 , it is a common practice to write the solution as: 

 

where  is the unit step sequence. 

 



Example 2: 

Find the solution of 

 

where r(k) = 3k ; y(0) = 0 and y(1) = 1. 

Solution: 

The given equation can be written as 

 

  

Taking z-transform 

 

 

Pluse Transfer Function 

Transfer function of an LTI (Linear Time Invariant) continuous time system is defined as 



 

 

where R(s) and C(s) are Laplace transforms of input r(t) and output c(t). We assume that initial 

condition are zero. 

  

Pulse transfer function relates Z-transform of the output at the sampling instants to the Z- 

transform of the sampled input. 

When the same system is subject to a sampled data or digital signal r*(t), the corresponding 

block diagram is given in Figure 1 . 

 

Figure 1: Block diagram of a system subject to a sampled input 

 

 

The output of the system is C(s) = G(s)R*(s). The transfer function of the above system is 

difficult to manipulates because it contains a mixture of analog and digital components. Thus, for 

ease of manipulation, it is desirable to express the system characteristics by a transfer function 

that relates r*(t) to c*(t), a fictitious sampler output, as shown in Figure 1. 

One can then write:  

 

 

 

  

Since c(kT) is periodic, 

 

 

 

 

 

 

 

   with c(0) = 0 

  

The detailed derivation of the above expression is omitted. Similarly,  



 

 

 

 

 

  

Again,  

 

 

 
 

  

  

 

 

  

Since R*(s) is periodic R*( s + jnws ) = R*(s). Thus  

 

 

 

 

 

  

   

 

 

  

If we define 

, then .  

 

is known as pulse transfer function. Sometimes it is also referred to as the starred transfer 

function. 

If we now substitute z = eTs in the previous expression, we will directly get the z-transfer 

functionG(z) as  

 

 

 

 
 

G(z) can also be defined as 



 

 

where g(kT) denotes the sequence of the impulse response g(t) of the system of transfer 

functionG(s). The sequence g(kT), k = 0, 1, 2,... , is also known as impulse sequence. 

 Overall Conclusion 

1. Pulse transfer function or Z transfer function characterizes the discrete data system only at 

sampling instants. The output information between the sampling instants is lost. 

2. Since the input of discrete data system is described by output of the sampler, for all practical 

purposes, the samplers can be simply ignored and the input can be regarded as r*(t). 

Alternate way to arrive at : 

 

 

 

  

   

 

 

  

When the input is r*(t),  

 

 

 

  

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

Using real convolution theorem 

 



 

Pulse transfer of discrete data systems with cascaded elements 

Care must be taken when the discrete data system has cascaded elements. Following two cases 

will be considered here.  

 1. Cascaded elements are separated by a sampler  

 2. Cascaded elements are not separated by a sampler 

The block diagram for the first case is shown in Figure 2. 

 

Figure 2: Discrete data system with cascaded elements, separated by a sampler 

The input-output relations of the two systems  and  are described by 

 

and 

 

Thus the input-output relation of the overall system is 

 

We can therefore conclude that the z-transfer function of two linear system separated by a 

sampler are the products of the individual z-transfer functions. 

Figure 3 shows the block diagram for the second case. 
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Figure 3: Discrete data system with cascaded elements, not separated by a sampler 

The continuous output  can be written as 

 

The output of the fictitious sampler is 

 

z-transform of the product  is denoted as 

 

One should note that in general , except for some special cases. 

The overall output is thus, 

 
 

Pluse transfer function of ZOH 

As derived in lecture 4 of module 1, transfer function of zero order hold is  

 

      

   Pulse transfer function   

 

  

  

 

 

  

  

 

 

  

  

  

  



 

 

This result is expected because zero order hold simply holds the discrete signal for one sampling 

period, thus taking Z-transform of ZOH would revert back its original sampled signal.  

 

A common situation in discrete data system is that a sample and hold (S/H) device precedes a 

linear system with transfer function G(s) as shown in Figure 2. We are interested in finding the 

transform relation between r*(t) and c*(t). 

 

 

Figure 2: Block diagram of a system subject to a sample and hold process 

Z-transform of output c(t) is  

 

 

 

  

  

 

 

  

  

 

 

  

 

where  is the Z-transfer function of an S/H device and a linear system. 

It was mentioned earlier that when sampling frequency reaches infinity, a discrete data system 

may be regarded as a continuous data system. However, this does not mean that if the 

signal r(t) is sampled by an ideal sampler then r*(t) can be reverted to r(t) by setting the 

sampling time T to zero. This simply bunches all the samples together. Rather, if the output of 

the sampled signal is passed through a hold device then setting the sampling time T to zero the 

original signal r(t) can be recovered. In relation with Figure 2, 

 



Example  

Consider that the input is , where  is the unit step function. 

 

Laplace transform of sampled signal r*(t) is 

 

Laplace transform of the output after the ZOH is  

 

 

 

  

  

 

 

  

 

When T → 0 , 

 

The limit can be calculated using L' hospital's rule. It says that: 

  

If  and if , then 

 

For the given example, x = T,  and . Both the 

expressions approach zero as T → 0. So,  

 

 

 

  



  

 

 

  

  

 

 

  

  

 

 

  

  

 

 

  

 

which implies that the original signal can be recovered from the output of the sample and hold 

device if the sampling period approaches zero. 

Pluse Transfer Function of Closed Loop Systems 

We know that various advantages of feedback make most of the control systems closed loop in 

nature. A simple single loop system with a sampler in the forward path is shown in Figure 1. 

 
Figure 1: Block diagram of a closed loop system with a sampler in the forward path 

The objective is to establish the input-output relationship. For the above system, the output of the 

sampler is regarded as an input to the system. The input to the sampler is regarded as another 

output. Thus the input-output relations can be formulated as  

 

 

 

(1) 

 

 

 

(2) 

Taking pulse transform on both sides of (1),  

 

    (3) 

where 



 

 

 

  

  

 

 

 

We can write from equation (3),  

 

 

 

  

 

 

 

  

  

 

 

  

Taking pulse transformation on both sides of (2)  

 

 

 

  

  

 

 

  

  

 

 

  

  

  

    

  

    

where . 

  

Now, if we place the sampler in the feedback path, the block diagram will look like the Figure 2. 
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Figure 2: Block diagram of a closed loop system with a sampler in the feedback path 

The corresponding input output relations can be written as: 

 

 

 

(4) 

 

 

 

 

 

(5) 

 

 

  

Taking pulse transformation of equations (4) and (5)  

 

 

 

  

 

 

 

  

where,   

 

  

 

 

 

  

can be written as  

 

 

 

  

 

 

 

  

 

We can no longer define the input output transfer function of this system by 



either  or . Since the input  is not sampled, the sampled signal  does 

not exist. The continuous-data output  can be expressed in terms of input as. 

 

 

Characteristics Equation 

Characteristics equation plays an important role in the study of linear systems. As said earlier, 

an nthorder LTI discrete data system can be represented by an nth order difference equation, 

 

 

where r(k) and c(k) denote input and output sequences respectively 

  

The input output relation can be obtained by taking Z-transformation on both sides, with zero 

initial conditions, as  

 

 

 

  

  

 

 

(6) 

 

The characteristics equation is obtained by equating the denominator of G(z) to 0, as 

 

Example  

Consider the forward path transfer function as  and the feedback transfer 



function as 1. If the sampler is placed in the forward path, find out the characteristics equation of 

the overall system for a sampling period T = 0.1 sec. 

Solution:  

 

 

 

  

Since the feedback transfer function is 1,  

 

 

 

  

   

 
 

  

  

 

 

  

 

 

 

 

 

 

 

  

 

So, the characteristics equation of the system is . 

 Causality and Physical Realizability 

In a causal system, the output does not precede the input. In other words, in a causal system, the 

output depends only on the past and presents inputs, not on the future ones. 

The transfer function of a causal system is physically realizable, i.e., the system can be realized 

by using physical elements. 

For a causal discrete data system, the power series expansion of its transfer function must not 

contain any positive power in z Positive power in z indicates prediction. Therefore, in the transfer 

function (6), n must be greater than or equal to m. 

m = n   proper transfer function  

m < n    strictly proper Transfer function 



Unit – III 

State Space analysis and concepts of 

controllability and observability 

State space analysis and the concepts of Controllability and observability 
State Space Representation of discrete time systems – State transition matrix and methods of 
evaluation – Discretization of continuous – Time state equations – Concepts of controllability 
and observability – Tests (without proof). 

Unit Objectives: 

After reading this Unit, you should be able to understand: 

 To represent the discrete–time systems in state–space model and evaluation of state transition 

matrix.  

 
 

Unit Outcomes: 

 Finally, the conventional and state–space methods of design are also introduced. 

 

 INTRODUCTION 

The analysis and design of control system are carried out using transfer functions 

together with a variety of graphical techniques such as root locus plots and Nyquist plots 

based on the input-output relations of the system. They are applicable only to linear time 

invariant systems having a single input and single output (SISO). Hence a new approach to 

control system analysis and design is evolved, which can be applied to the design of optimal 

and adaptive control system, which are mostly time varying and/or non-linear multiple inputs 

and multiple outputs(MIMO). This new approach is based on the concept of state, which 

includes the initial conditions in the design. 

 Advantages of state-space technique: 

 It is possible to analyses time-varying or time-invarying linear or non-linear, single or 

multiple input-output systems. 

 State equations are highly compatible for simulation on analog or digital computer. 

 It is possible to optimize the system useful for optimal design. 

 State space analysis gives us the information about the internal behavior of the system, 



as well as the input and output behavior. 

 State-space techniques can be used to find the stability of a negative feed-back system, 

when the feed-back signal is other than the output signal. 

 It is possible to include initial conditions in state space technique. 

 CONCEPT OF STATE, STATE VARIABLES & STATE VECTOR 

State: The state of a dynamic system is the smallest set of variables, called state variables 

such that the knowledge of these variables at t = to together with the input for t>to. 

Completely determine the behaviour of the system for anytime t> to. Note that in dealing 

with linear time invariant systems, we usually choose the reference time to be zero. 

State Variables: The state variables of a dynamic system are the smallest set of variables which 

determine the state of the dynamic system. If at least n variables x1(k), x2(k),----------- xn(k) are 

needed to completely describe the behavior of a dynamic system, then such n variables x1(k), 

x2(k),-----------xn(k)  are called a set of state variables 

The generic structure of a state-space model of a nth order continuous time dynamical system 

with m input and p output is given by: 

 

(1) 

 

where, x(t) is the n dimensional state vector, u(t) is the m dimensional input vector, y(t) is 

the pdimensional output vector and AεRn x n , B εRn x m, , CεRp x n,, D εRp x m, 

 

Example 

Consider a nth order differential equation  

 

 
 

Define following variables,  



 

The nth order differential equation may be written in the form of n first order differential 

equations as 

 

 

or in matrix form as, 

 

where 

 

 

 

The output can be one of states or a combination of many states. Since, ,  

 

 

 Correlation between state variable and transfer functions models 

The transfer function corresponding to state variable model (1) , when u and y are scalars, is: 



 

  

(2) 

where  is the characteristic polynomial of the system. 

 Solution of Continuous Time State Equation 

The solution of state equation (1) is given as  

 

where  is known as the state transition matrix and x(to) is the initial state of the 

system. 

 State Variable Analysis of Digital Control Systems 

The discrete time systems, as discussed earlier, can be classified in two types. 

1. Systems that result from sampling the continuous time system output at discrete instants only, 

i.e., sampled data systems. 

2. Systems which are inherently discrete where the system states are defined only at discrete time 

instants and what happens in between is of no concern to us. 

 State Equations of Sampled Data Systems 

Let us assume that the following continuous time system is subject to sampling process with an 

interval of T. 

 

We know that the solution to above state equation is: 

 



Since the inputs are constants in between two sampling instants, one can write: 

   for  

which implies that the following expression is valid within the 

interval  if we consider : 

 

Let us denote  by . Then we can write: 

 

If , 

 

(4) 

where  and .  

 

If , we can rewrite  as .  

 

Equation (4) has a similar form as that of equation (3) if we 

consider  and . Similarly by setting t = kT , one can show that the 

output equation also has a similar form as that of the continuous time one. 

When T = 1, 

 

 



 State Equations of Inherently Discrete Systems 

When a discrete system is composed of all digital signals, the state and output equations can be 

described by 

 

 Discrete Time Approximation of A Continuous Time State Space Model 

Let us consider the dynamical system described by the state space model (3). By approximating 

the derivative at t = kT using forward difference, we can write: 

 

  

Rearranging the above equations, 

 

We can thus conclude from the discussions so far that the discrete time state variable model of a 

system can be described by 

 

where A, B are either the descriptions of an all digital system or obtained by sampling the 

continuous time process. 

 State Space Model to Transfer Function 

Consider a discrete state variable model 



 

(1) 

Taking the Z-transform on both sides of Eqn. (1), we get 

 

  

 

where  is the initial state of the system. 

 

To find out the transfer function, we assume that the initial conditions are zero, i.e., , 

thus 

 

Therefore, the transfer function becomes 

 

(2) 

which has the same form as that of a continuous time system. 

 Various Canonical Forms 

We have seen that transform domain analysis of a digital control system yields a transfer 

function of the following form. 

 

(3) 



 

 

Various canonical state variable models can be derived from the above transfer function model. 

  

 Controllable canonical form 

Consider the transfer function as given in Eqn. (3). Without loss of generality, we 

assume . Let 

 

In time domain, the above equation may be written as 

 

Now, the output  may be written in terms of  as 

 

 

or in time domain as  

 

The block diagram representation of above equations is shown in Figure 1. State variables are 

selected as shown in Figure 1. 

The state equations are then written as: 

 



 

 

Output equation can be written as by following the Figure 1. 

 

  

  

(4

) 

 

Figure 1: Block Diagram representation of controllable canonical form 

where 

 

 Observable Canonical Form 

Equation (3) may be rewritten as 



 

 

 

 

The corresponding block diagram is shown in Figure 2. 

  

 

Figure 2: Block Diagram representation of observable canonical form 

Choosing the outputs of the delay blocks as the state variables, we have following state equations 

 

This can be rewritten in matrix form (4) with 



 

 Duality 

In previous two sections we observed that the system matrix A in observable canonical form is 

transpose of the system matrix in controllable canonical form. Similarly, control matrix B in 

observable canonical form is transpose of output matrix C in controllable canonical form. So also 

output matrix C in observable canonical form is transpose of control matrix B in controllable 

canonical form. 

 

 Jordan Canonical Form 

In Jordan canonical form, the system matrix A represents a diagonal matrix for distinct poles 

which basically form the diagonal elements of A.  

 

Assume that  are the distinct poles of the given transfer function (3). 

Then partial fraction expansion of the transfer function yields 

 

  

  

(5) 

  

A parallel realization of the transfer function (5) is shown in Figure 3. 



 

Figure 3: Block Diagram representation of Jordan canonical form 

Considering the outputs of the delay blocks as the state variables, we can construct the state 

model in matrix form (4), with 

 

When the matrix  has repeated eigenvalues, it cannot be expressed in a proper diagonal form. 

However, it can be expressed in a Jordan canonical form which is nearly a diagonal matrix. Let 

us consider that the system has eigenvalues, , ,  and . In that case,  matrix in 

Jordan canonical form will be 

 



1. The diagonal elements of the matrix  are eigenvalues of the same.  

2. The elements below the principal diagonal are zero.  

3. Some of the elements just above the principal diagonal are one.  

4. The matrix can be divided into a number of blocks, called Jordan blocks, along the 

diagonal. Each block depends on the multiplicity of the eigenvalue associated with it. For 

example, Jordan block associated with a eigenvalue  of multiplicity  can be written as 

 

Example: Consider the following discrete transfer function. 

 

Find out the state variable model in 3 different canonical forms. 

Solution: 

The state variable model in controllable canonical form can directly be derived from the transfer 

function, where the A, B, C and D matrices are as follows: 

 

The matrices in state model corresponding to observable canonical form are obtained as, 

 

  

To find out the state model in Jordan canonical form, we need to fact expand the transfer 

function using partial fraction, as 

 

Thus the A, B, C and D matrices will be: 



 

 

Characteristic Equation, eigenvalues and eigen vectors 

For a discrete state space model, the characteristic equation is defined as 

 

The roots of the characteristic equation are the eigenvalues of matrix A. 

1. If  , i.e., A is nonsingular and , , ,  are the eigenvalues of A, 

then, , , ,  will be the eigenvalues of A-1. 

2. Eigenvalues of A and AT are same when A is a real matrix.  

 

3. If A is a real symmetric matrix then all its eigenvalues are real. 

The  vector  which satisfies the matrix equation 

 

(1) 

where  denotes the ith eigenvalue, is called the eigen vector 

of A associated with the eigenvalue . If eigenvalues are distinct, they can be solved directly 

from equation (1).  

Properties of eigen vectors  

 

1. An eigen vector cannot be a null vector.  

 

2. If  is an eigen vector of A then  is also an eigen vector of A where m is a scalar.  

 

3. If A has n distinct eigenvalues, then the n eigen vectors are linearly independent. 

 Eigen vectors of multiple order eigenvalues  

 



When the matrix  an eigenvalue  of multiplicity , a full set of linearly independent may 

not exist. The number of linearly independent eigen vectors is equal to the 

degeneracy  of . The degeneracy is defined as 

 

where  is the dimension of  and  is the rank of . Furthermore, 

 

 2 Similarity Transformation and Diagonalization 

Square matrices A and  are similar if 

 

The non-singular matrix P is called similarity transformation matrix. It should be noted that 

eigenvalues of a square matrix A are not altered by similarity transformation.  

 Diagonalization: 

 

If the system matrix A of a state variable model is diagonal then the state dynamics are 

decoupled from each other and solving the state equations become much more simpler. 

In general, if A has distinct eigenvalues, it can be diagonalized using similarity transformation. 

Consider a square matrix A which has distinct eigenvalues . It is required to 

find a transformation matrix P which will convert A into a diagonal form 

 

through similarity transformation AP = P∧ . If  are the eigenvectors of 

matrix Acorresponding to eigenvalues , then we know . This 

gives 



 

Thus . Consider the following state model. 

 

If P transforms the state vector  to  through the relation 

   or,  

then the modified state space model becomes  

                                                        

where . 

 

 Computation of  

We have seen that to derive the state space model of a sampled data system, we need to know the 

continuous time state transition matrix . 

 Using Inverse Laplace Transform 

For the system , the state transition matrix e At can be computed as, 

  

 Using Similarity Transformation 

If ∧ is the diagonal representation of the matrix A, then ∧ = P-1AP. When a matrix is in diagonal 

form, computation of state transition matrix is straight forward: 



 

Given e A t, we can show that 

 

Proof. 

 

 Using Caley Hamilton Theorem 

Every square matrix A satisfies its own characteristic equation. If the characteristic equation is 

 

then, 

 

Application: Evaluation of any function  and  

    order  



 

If A has distinct eigenvalues , then, 

 

The solution will give rise to , then 

 

 

If there are multiple roots (multiplicity = 2), then 

 

(2) 

 

(3) 

 

Example 1: 

If  

then compute the state transition matrix using Caley Hamilton Theorem. 



  

(with multiplicity 2)  

Let    and  

Then using (2) and (3), we can write 

 

This implies 

 

 

Solving the above equations 

 

Then 

 

 

Example 2 For the system , where . Compute 

e A t using 3 different techniques. 



Solution: Eigenvalues of matrix A are . 

Method 1: 

 

Method 2: 

 where . Eigen values are . The 

corresponding eigenvectors are found by using equation  as follows: 

 

 

 

Taking , we get . So, the eigenvector corresponding to  is  and the 

one corresponding to  is . The transformation matrix is given by 

 

Now, 



 

Method 3: 

Caley Hamilton Theorem  

The eigenvalues are . 

 

 

Solving, 

 

 

Hence, 

 

 

 



We will now show through an example how to derive discrete state equation from a continuous 

one. 

Example: Consider the following state model of a continuous time system. 

 

If the system is under a sampling process with period T, derive the discrete state model of the 

system. 

To derive the discrete state space model, let us first compute the state transition matrix of the 

continuous time system using Caley Hamilton Theorem. 

 

This implies 

 

Solving the above equations 

 

Then 

 

Thus the discrete state matrix A is given as 

 



 

The discrete input matrix B can be computed as 

 

The discrete state equation is thus described by 

 

  

When T = 1 , the state equations become 

 

 

Solution to Discrete State Equation 

In this lecture we would discuss about the solution of discrete state equation, computation of 

discrete state transition matrix and state diagram. 

Consider the following state model of a discrete time system: 

 

where the initial conditions are x(0) and u(0). Putting k = 0 in the above equation, we get 

 



Similarly if we put k = 1 , we would get 

 

For k = 2 , 

 

  

and so on. If we combine all these equations, we would get the following expression as a general 

solution: 

 

As seen in the above expression, x(k) has two parts. One is the contribution due to the initial 

statex(0) and the other one is the contribution of the external 

input u(i) for . When the input is zero, solution of the homogeneous 

state equation  can be written as 

 

where  is the state transition matrix. 

 Evaluation of  

Similar to the continuous time systems, the state transition matrix of a discrete state model can be evaluated 

using the following different techniques. 

 Using Inverse Z-transform: 

 

 

 Using Similarity Transformation If ∧ is the diagonal representation of the matrix A, 



then . When a matrix is in diagonal form, computation of state transition matrix is straight 

forward: 

  

Given , we can compute  

 Using Caley Hamilton Theorem 

 

Example Compute Ak for the following system using three different techniques and hence 

find y(k)for k ≥ 0 . 

 

 

 

Solution:  and eigenvalues of A are - 0.3 and - 0.7 

Method 1 : 

 



 

Method 2 : 

 where . 

Eigen values are - 0.3 and - 0.7. The corresponding eigenvectors are found, by using 

equation , as  and  respectively. The transformation matrix is 

given by 

 

Thus, 

 

Method 3: 

Caley Hamilton Theorem  

The eigenvalues are - 0.3 and - 0.7. 



 

Solving, 

 

Hence, 

Th

e solution x(k) is 

 

Since , we can write 

 

Now, 



 

Putting the above expression in y(k) 

 
 

Controllability and observability are two important properties of state models which are to be 

studied prior to designing a controller.  

Controllability deals with the possibility of forcing the system to a particular state by application 

of a control input. If a state is uncontrollable then no input will be able to control that state. On 

the other hand whether or not the initial states can be observed from the output is determined 

using observability property. Thus if a state is not observable then the controller will not be able 

to determine its behavior from the system output and hence not be able to use that state to 

stabilize the system. 

1. Controllability 

Before going to any details, we would first formally define controllability. Consider a dynamical 

system 

 

(1) 

 

where , , , . 

Definition 1 The state equation (1) (or the pair (A,B) ) is said to be completey state controllable 

or simply controllable if for any initial state x(0) and any final state x(N), there exists an input 

sequence , , which transfers x(0) to x(N) for some finite N. 

Otherwise the state equation (1) is uncontrollable. 

Definition 2   Complete Output Controllability: The system given in equation (1) is said to be 

completely output controllable or simply output controllable if any final output  can be 

reached from any initial state  by applying an unconstrained input 



sequence , , for some finite . Otherwise (1) is not output 

controllable. 

1.1 Theorems on controllability 

1. The state equation (1) or the pair (A,B) is controllable if and only if 

the  controllability matrix 

 

  has rank n, i.e., full row rank.  

 

  2. The state equation (1) is controllable if the  controllability grammian matrix  

 

 

   

 

 

is nonsingular for any nonzero finite N.  

 

  3. If the system has a single input and the state model is in controllable canonical form then 

the system is controllable.  

 

  4. When A has distinct eigenvalues and in Jordan/Diagonal canonical form the state model is 

controllable if and only if all the rows of B are nonzero.  

 

  5. When A has multiple order eigenvalues and in Jordan canonical form, then the state model 

is controllable if and only if 

     

  i. each Jordan block corresponds to one distinct eigenvalue and  

   

  ii. the elements of B that correspond to last row of each Jordan block are not all zero. 

Output Controllability: The system in equation (1) is completely output controllable if and 

only if the  output controllability matrix 

 

    

has rank , i.e., full row rank. 



 Controllability to the origin and Reachability 

There exist three different definitions of controllability in the literature: 

1. Input transfers any state to any state. This definition is adopted in this course. 

2. Input transfers any state to zero state. This is called controllability to the origin. 

3. Input transfers zero state to any state. This is referred as controllability from the origin or 

reachability. 

Above three definitions are equivalent for continuous time system. For discrete time systems 

definitions (1) and (3) are equivalent but not the second one. 

 

Example: Consider the system , . where 

 

Show if the system is controllable. Find the transfer function . Can you see any 

connection between controllability and the transfer function?  

Solution: The controllability matrix is given by 

 

Its determinant  has a rank 1 which is less than the order of the matrix, i.e., 2. 

Thus the system is not controllable. The transfer function 

 

 

 

Although state model is of order 2, the transfer function has order 1. The eigenvalues of A 

are  and . This implies that the transfer function is associated with pole-

zero cancellation for the pole at -3. Since one of the dynamic modes is cancelled, the system 

became uncontrollable. 



 Observability 

Definition 2 The state model (1) (or the pair (A,C) ) is said to be observable if any initial 

state x(0)can be uniquely determined from the knowldge of output y(k) and input sequence u(k), 

for , where N is some finite time. Otherwise the state model (1) is 

unobservable. 

 Theorems on observability 

1. The state model (1) or the pair (A,C) is observable if and only if the  observability 

matrix 

 

 

has rank n, i.e., full column rank. 

2. The state model (1) is observable if the  observability grammian matrix 

   

 

 

is nonsingular for any nonzero finite N. 

3. If the state model is in observable canonical form then the system is observable. 

4. When A has distinct eigenvalues and in Jordan/Diagonal canonical form, the state model is 

observable if and only if none of the columns of C contain zeros. 

5. When A has multiple order eigenvalues and in Jordan canonical form, then the state model is 

observable if and only if 

i. each Jordan block corresponds to one distinct eigenvalue and 

ii. the elements of C that correspond to first column of each Jordan block are not all zero. 



 Theorem of Duality 

The pair (A,B) is controllable if and only if the pair (AT,BT) is observable. 

Exercise: Prove the theorem of duality. 

 Loss of controllability or observability due to pole-zero cancellation 

We have already seen through an example that a system becomes uncontrollable when one of the 

modes is cancelled. Let us take another example. 

 

Example: 

 

The controllability matrix 

 

implies that the state model is controllable. On the other hand, the observability matrix 

 

has a rank 1 which implies that the state model is unobservable. Now, if we take a different set of 

state variables so that, , then the state variable model will be: 

 

  

Lets us take . The new state variable model is: 

 



which implies  

The controllability matrix 

 

implies that the state model is uncontrollable. The observability matrix 

 

implies that the state model is observable. The system difference equation will result in a tranfer 

function which would involve pole-zero cancellation. Whenever there is a pole zero cancellation, 

the state space model will be either uncontrollable or unobservable or both. 

  

 Controllability/Observability after sampling 

Question: If a continuous time system is undergone a sampling process will its controllability or 

observability property be maintained? 

The answer to the question depends on the sampling period T and the location of the Eigen 

values of A. 

. Loss of controllability and/or observability occurs only in presence of oscillatory modes of the 

system. 

. A sufficient condition for the discrete model with sampling period T to be controllable is that 

whenever ,  for  

. The above is also a necessary condition for a single input case. 

Note: If a continuous time system is not controllable or observable, then its discrete time 

version, with any sampling period, is not controllable or observable. 

 

 

 

 



Unit – IV 

Stability Analysis 

Mapping between the S–Plane and the Z–Plane – Primary strips and Complementary Strips – 

Stability criterion – Modified routh’s stability criterion and jury’s stability test 

Unit Objectives: 

After reading this Unit, you should be able to understand: 

 To examine the stability of the system using different tests. To study the conventional method 

of analyzing digital control systems in the w–plane 
 

Unit Outcomes: 

 The learner understands the stability of digital control systems and how to make the unstable 

system to stable   
 

 Relationship between s-plane and z-plane 

In the analysis and design of continuous time control systems, the pole-zero configuration of the 

transfer function in s-plane is often referred. We know that: 

. Left half of s-plane  Stable region. 

. Right half of s-plane  Unstable region. 

For relative stability again the left half is divided into regions where the closed loop transfer 

function poles should preferably be located.  

Similarly, the poles and zeros of a transfer function in z-domain govern the performance 

characteristics of a digital system. 

One of the properties of F*(s) is that it has an infinite number of poles, located periodically with 

intervals of  with m = 0, 1, 2,......, in the s-plane where  is the sampling frequency in 

rad/sec. 

If the primary strip is considered, the path, as shown in Figure 1, will be mapped into a unit 

circle in the z-plane, centered at the origin. 



 

Figure 1: Primary and complementary strips in s-plane 

The mapping is shown in Figure 2. 

 

Figure 2: Mapping of primary strip in z-plane 

Since 
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where m is an integer, all the complementary strips will also map into the unit circle. 

 Mapping guidelines 

1. All the points in the left half s-plane correspond to points inside the unit circle in z-plane.  

2. All the points in the right half of the s-plane correspond to points outside the unit circle.  

3. Points on the jw axis in the s-plane correspond to points on the unit circle  in the z-

plane.  

   

  

  

 

  

  

 

    magnitude =1 

  

  

 

 Constant damping loci, constant frequency loci and contant damping ration loci 

 Constant damping loci: The real part σ of a pole, , of a transfer function in 

s-domain, determines the damping factor which represents the rate of rise or decay of time 

response of the system. 

. Large σ represents small time constant and thus a faster decay or rise and vice versa. 

. The loci in the left half s-plane (vertical line parallel to jw axis as in Figure 2(a)) denote positive 

damping since the system is stable 

. The loci in the right half s-plane denote negative damping. 

. Constant damping loci in the z-plane are concentric circles with the center at z = 0 , as shown in 

Figure 2(b). 

. Negative damping loci map to circles with radii >1 and positive damping loci map to circles 

with radii <1. 



 

Figure 2: Constant damping loci in (a) s-plane and (b) z-plane 

 Constant frequency loci: These are horizontal lines in s-plane, parallel to the real axis as 

shown in Figure 3(a). 

 

Figure 3: Constant frequency loci in (a) s-plane and (b) z-plane 

Corresponding Z-transform: 



  

 

  

  

 

 

  

 

 

When  = constant, it represents a straight line from the origin at an angle of  rad, 

measured from positive real axis as shown in Figure 3 (b). 

 Constant damping ratio loci: If  denotes the damping ratio:  

  

 

  

  

 

 

  

  

 

 

  

 is the natural undamped frequency and . If we take Z-transform  

  

 

  

  

 

 

  

For a given  or , the locus in s-plane is shown in Figure 4(a).  

 

In z-plane, the corresponding locus will be a logarithmic spiral as shown in Figure 4(b), except 

for  or  and  or . 
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Figure 4: Constant damping ratio locus in (a) s-plane and (b) z-plane 

 

Stability Analysis of closed loop system in z-plane 

Stability is the most important issue in control system design. Before discussing the stability test 

let us first introduce the following notions of stability for a linear time invariant (LTI) system.  

 

1. BIBO stability or zero state stbaility  

 

2. Internal stability or zero input stability  

 

Since we have not introduced the concept of state variables yet, as of now, we will limit our 

discussion to BIBO stability only.  

 

An initially relaxed (all the initial conditions of the system are zero) LTI system is said to be 

BIBO stable if for every bounded input, the output is also bounded.  

 

However, similar to continuous time systems, the stability of the following closed loop system 



 
can also be determined from the location of closed loop poles in z-plane which are the roots of 

the characteristic equation 

 

1. For the system to be stable, the closed loop poles or the roots of the characteristic equation 

must lie within the unit circle in z-plane. Otherwise the system would be unstable. 

2. If a simple pole lies at , the system becomes marginally stable. Similarly if a pair of 

complex conjugate poles lie on the  circle, the system is marginally stable. Multiple 

poles at the same location on unit circle make the system unstable. 

Example 1:   

 

Determine the closed loop stability of the system shown in Figure 1 when K = 1. 

 

Figure 1: Example 1 

Solution:  

 

  

  

  

    

  

  

Since ,  and   

 can be simplified as  



 

  

  

  

    

  

  

    

  

  

   

  

  

We know that the characteristics equation is   

 

 

 

  

  

 

 

  

  

  

  

  

  

  

Since      <1, the system is stable.  

 

Three stability tests can be applied directly to the characteristic equation without solving for the 

roots.  

→ Schur-Cohn stability test  

→ Jury Stability test  

→ Routh stability coupled with bi-linear transformation.  

 

Other stability tests like Lyapunov stability analysis are applicable for state space system models 

which will be discussed later. Computation requirements in Jury test is simpler than Schur-Cohn 

when the co-efficients are real which is always true for physical systems. 

Jury Stability Test 

Assume that the characteristic equation is as follows,  

 , where .  

Jury Table 
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where, 

 

 

This system will be stable if: 



 

Example 2:   The characteristic equation is 

  

Thus,                       

 

We will now check the stability conditions.  

1.  First condition is satisfied.  

2.  Second condition is satisfied.  

3.  Third condition is satisfied.  

Next we will construct the Jury Table. 

Jury Table 

         



Rest of the elements are also calculated in a similar fashion. The elements 

are                    . 

One can see  

  

  

 

All criteria are satisfied. Thus the system is stable. 

Example 3: The characteristic equation is   

Thus                  .  

Stability conditions are: 

1.  First condition is satisfied.  

2.  Second condition is not satisfied.  

Since one of the criteria is violated, we may stop the test here and conclude that the system is 

unstable.  or  indicates the presence of a root on the unit circle and in 

that case the system can at the most become marginally stable if rest of the conditions are 

satisfied.  

The stability range of a parameter can also be found from Jury's test which we will see in the 

next example. 

Example 4: Consider the system shown in Figure 1. Find out the range of K for which the 

system is stable.  

Solution:  

 

  

  

  

The closed loop transfer 

function:  

  

  

  



 

Characteristic equation:   

Since it is a second order system only 3 stability conditions will be there. 

 

Combining all, the range of K is found to be 0 < K < 2.39 .  

If K = 2.39 , system becomes critically stable. The characteristics equation becomes:  

        

Sampling period T = 1 sec. 

rad/sec  

The above frequency is the frequency of sustained oscillation. 

1.2 Singular Cases 

The situation, when some or all of the elements of a row in the Jury table are zero, indicates the 

presence of roots on the unit circle. This is referred to as a singular case.  

 

It can be avoided by expanding or contracting unit circle infinitesimally by an amount ε which is 

equivalent to move the roots of P(z) off the unit circle. The transformation is: 

 
where ε is a very small number. When ε is positive the unit circle is expanded and when ε is 

negative the unit circle is contracted. The difference between the number of zeros found inside or 

outside the unit circle when the unit circle is expanded or contracted is the number of zeros on 

the unit circle.  

 



Since  for both positive and negative ε, the transformation requires 

the coefficient of the zn term be multiplied by . 

Example 5: The characteristic equation:  

Thus,               .  

 

We will now check the stability conditions.  

1.  First condition is satisfied.  

2.  Second condition is satisfied.  

3.  Third condition is satisfied.  

Jury Table 

 

Since the element b1 is zero, we know that some of the roots lie on the unit circle. 

If we replace z by (1 + ε) z, the characteristic equation would become: 

 

First three stability conditions are satisfied when ε → 0+.  

 

Jury Table 



 

 and . 

Since, when ε → 0+, , thus  which implies 

that the roots which are not on the unit circle are actually inside it and the system is marginally 

stable. The roots of the characteristic equation are found out to be ±i and – 0.25 which verifies 

our conclusion. 

 

Stability Analysis using Bilinear Transformation and Routh Stability Criterion 

Another frequently used method in stability analysis of discrete time system is the bilinear 

transformation coupled with Routh stability criterion. This requires transformation from z -plane 

to another plane called w -plane.  

The bilinear transformation has the following form. 

 

where a, b, c, d are real constants. If we consider a = b = c = 1 and d = - 1, then the 

transformation takes a form 

 

or,                                                           

 

 

This transformation maps the inside of the unit circle in the z -plane into the left half of the w -

plane. 



Let the real part of w be α and imaginary part be &beta.  

 

. The inside of the unit circle in z -plane can be represented by: 

 

 

Thus inside of the unit circle in z -plane maps into the left half of w -plane and outside of the unit 

circle in z -plane maps into the right half of w -plane. Although w -plane seems to be similar 

to s -plane, quantitatively it is not same.  

In the stability analysis using bilinear transformation, we first substitute  in the 

characteristics equation P(z) = 0 and simplify it to get the characteristic equation in w -plane 

asQ(w) = 0. Once the characteristics equation is transformed as Q(w) = 0, Routh stability 

criterion is directly used in the same manner as in a continuous time system. 

We will now solve the same examples which were used to understand the Jury's test. 

Example 1 The characteristic equation:  

Transforming P(z) into w -domain: 

 

 
    

or,  

We can now construct the Routh array as 

 



There is one sign change in the first column of the Routh array. Thus the system is unstable with 

one pole at right hand side of the w -plane or outside the unit circle of z -plane. 

Example2: The characteristic 

equation:   

 

Transforming P(z) into w -domain: 

 
    

or,  

We can now construct the Routh array as 

 

All elements in the first column of Routh array are positive. Thus the system is stable. 

Example 3: 

Consider the system shown in Figure 1. Find out the range of K for which the system is stable.  

Solution: 

   

 

 

 



Figure 1: Figure for Example 3 

Characteristic equation: 

 

 

Transforming P(z) into w -domain: 

 

or, 

 

 

We can now construct the Routh array as 

  

 

The system will be stable if all the elements in the first column have same sign. Thus the 

conditions for stability, in terms of K, are  

 

 

 

  

 

 

 

  

 

    or,  

  

 

 

 

  



 

 

Combining above four constraints, the stable range of K can be found as 

 

 Singular Cases 

In Routh array, tabulation may end in occurance with any of the following conditions. 

         . The first element in any row is zero 

        .  All the elements in a single row are zero. 

The remedy of the first case is replacing zero by a small number ε and then proceeding with the 

tabulation. Stability can be checked for the limiting case. Second singular case indicates one or 

more of the following cases. 

         .  Pairs of real roots with opposite signs. 

         . Pairs of imaginary roots. 

        .  Pairs of complex conjugate roots which are equidistant from the origin. 

When a row of all zeros occurs, an auxiliary equation A(w)= 0 is formed by using the 

coefficients of the row just above the row of all zeros. The roots of the auxiliary equation are 

also the roots of the characteristic equation. The tabulation is continued by replacing the row of 

zeros by the coefficients of . 

Looking at the correspondence between w -plane and z -plane, when an all zero row occurs, we 

can conclude that following two scenarios are likely to happen. 

        . Pairs of real roots in the z -plane that are inverse of each other. 

        . Pairs of roots on the unit circle simultaneously. 

Example 4: 

Consider the characteristic equation 

 

Transforming P(z) into w -domain: 



 
    

or,  

The Routh array: 

 

The tabulation ends here. The auxiliary equation is formed by using the coefficients of w2 row, 

as: 

 

Taking the derivative, 

 

Thus the Routh tabulation is continued as 

 

As there is one sign change in the first column, one of the roots is on the right hand side of 

the w -plane. This implies that one root in z -plane lies outside the unit circle.  

 

To verify our conclusion, the roots of the polynomial , are foun  



out to be z = 0.5, z = -0.8 and z = 2. Thus one can see that z = 2 lies outside the unit circle and it 

is inverse of z = 0.5 which caused the all zero row in w -plane. 

 

Unit – V 

Design of Discrete-time Control Systems by 

Conventional Methods 

UNIT SYLLABUS 

Transient and steady state specifications – Design using frequency response in the w–plane for 

lag and led compensators – Root locus technique in the z– plane 

 

Unit Objectives: 

After reading this Unit, you should be able to understand: 

 To study the conventional method of analyzing digital control systems in the w–plane. To 

study the design of state feedback control by “the pole placement method.”  
 

Unit Outcomes: 

 The learner understands the stability of digital control systems and how to make the unstable 

system to stable. The leaner will understand about designing of systems by conventional 

methods like root locus and bode plot through bilinear transformation.  
 

 Time Response of discrete time systems 

Absolute stability is a basic requirement of all control systems. Apart from that, good relative 

stability and steady state accuracy are also required in any control system, whether continuous 

time or discrete time. Transient response corresponds to the system close loop poles and steady 

state response corresponds to the excitation poles or poles of the input function. 

 Time response specifications 

In many practical control systems, the desired performance characteristics are specified in terms 

of time domain quantities. Unit step input is the most commonly used in analysis purpose of a 

system since it is easy to generate and represents a sufficiently drastic change thus provides 

useful information on both transient and steady state response.  

 

The transient response of a system depends on the initial conditions. It is a common practice to 



consider the system initially at rest.  

Consider the digital control system shown in Figure 1 

 

Figure 1: Block Diagram of a closed loop digital system 

Similar to the continuous time case, transient response of a digital control system can also be 

characterized by the following. 

1. Rise time ( ): Time required for the unit step response to rise from 0% to 100% of its final 

value in case of underdamped system or 10% to 90% of its final value in case of overdamped 

system.  

 

2. Delay time ( ): Time required for the the unit step response to reach 50\% of its final value.  

 

3. Peak time ( ): Time at which maximum peak occurs.  

 

4. Peak overshoot ( ): The difference between the maximum peak and the steady state value 

of the unit step response.  

 

5. Settling time ( ): Time required for the unit step response to reach and stay within 2% or 5% 

of its steady state value. However since the output response is discrete the calculated 

performance measures may be slightly different from the actual values. Figure 2 illustrates this. 

The output has a maximum value whereas the maximum value of the discrete output 

is  which is always less than or equal to . If the sampling period is small enough 

compared to the oscillations of the response then this difference will be small 

otherwise  may be completely erroneous. 



 

Figure 2: Unit step response of a discrete time system 

 Steady state error 

The steady state performance of a stable control system is measured by the steady error due to 

step, ramp or parabolic input depending on the system type. Consider the discrete time system as 

shown in Figure 3. 

  

 

Figure 3: Block Diagram 2 

 

From Figure 2, we can write 

 

We will consider the steady state error at the sampling instants.  

From final value theorem 



 

 

The steady state error of a system with feedback thus depends on the input signal 

 and the loop transfer function . 

 

 Type-0 system and position error constant 

Systems having a finite nonzero steady state error with a zero order polynomial input (step input) 

are called Type-0 systems. The position error constant for a system is defined for a step input. 

 

 

 

where  is known as the position error constant.  

 Type-1 system and velocity error constant 



Systems having a finite nonzero steady state error with a first order polynomial input (ramp 

input) are called Type-1 systems. The velocity error constant for a system is defined for a ramp 

input. 

 

 

 

where  is known as the velocity error constant. 

 Type-2 system and acceleration error constant 

Systems having a finite nonzero steady state error with a second order polynomial input 

(parabolic input) are called Type-2 systems. The acceleration error constant for a system is 

defined for a parabolic input. 

 

 

 

where  is known as the acceleration error constant.  

Table1 shows the steady state errors for different types of systems for different inputs. 



 

Example 1: Calculate the steady state errors for unit step, unit ramp and unit parabolic inputs for 

the system shown in Figure 4.  

 

Figure 4: Block Diagram for Example 1 

Solution: The open loop transfer function is: 

 

Taking Z-transform 

 

Steady state error for step 

input  where . .  



Steady state error for ramp 

input  where . .  

Steady state error for parabolic 

input  where . . 

1 Prototype second order system 

The study of a second order system is important because many higher order system can be 

approximated by a second order model if the higher order poles are located so that their 

contributions to transient response are negligible. A standard second order continuous time 

system is shown in Figure 1. 

 

Figure 1: Block Diagram of a second order continuous time system 

We can write, 

 

 Bode Plot 

Bode plot is the graphical tool for drawing the frequency response of a system.  

 

It is represented by two separate plots, one is the magnitude vs frequency and the other one is 

phase vs frequency. The magnitude is expressed in dB and the frequency is generally plotted in 

log scale.  

 

One of the advantages of the Bode plot in s-domain is that the magnitude curve can be 

approximated by straight lines which allows the sketching of the magnitude plot without exact 



computation.  

 

This feature is lost when we plot Bode diagram in z-domain. To incorporate this feature, we use 

bi-linear transformation to transform unit circle of the z-plane into the imaginary axis of another 

complex plane, w plane, where 

 

 

From the power series expansion 

 

 

For frequency domain analysis the above bi-linear transformation may be used to 

convert GH(z) toGH(w) and then construct the Bode plot. 

 

Example 1: Let us consider a digital control system for which the loop transfer function is given 

by 

  

 

 

where sampling time T = 0.1 sec. Putting , we get the transfer function in w plane 

as 



 

 

where  is the frequency in w plane. Corner frequencies are 1/1.0026 = 0.997 rad/sec and 

1/0.05 = 20 rad/sec. 

The straight line asymptotes of the Bode plot can be drawn using the following. 

 • Up to ωw= 0.997 rad/sec, the magnitude plot is a straight line with slope - 

20dB/decade.At ωw= 0.01 rad/sec,the magnitude 

is  dB. 

• From ωw= 0.997 rad/sec to ωw= 20 rad/sec, the magnitude plot is a straight line with slope - 20 

- 20 = - 40 dB/decade. 

• Since both of the zeros will contribute same to the magnitude plot, after ωw= 20 rad/sec, the 

slope of the straight line will be - 40 + 20 + 20 = 0 dB/decade. 

The asymptotic magnitude plot is shown in Figure 1. 

  



 

Figure 1: Bode asymptotic magnitude plot for Example 1 

 

One should remember that the actual plot will be slightly different from the asymptotic plot. In 

the actual plot, errors due to straight line assumptions is compensated.  

 

Phase plot is drawn by varying the frequency from 0.01 to 100 rad/sec at regular intervals. The 

phase angle contributed by one zero will be canceled by the other. Thus the phase will vary from 

- 90° (270°) to - 180° (180°). 

Figure 2 shows the actual magnitude and phase plot as drawn in MATLAB. 

  



 

Figure 2: Bode magnitude and phase plot for Example 1 

  

 Gain margin and Phase margin 

Gain margin and phase margins are the measures of relative stability of a system.  

 

Similar to continuous time case, we have to first define phase and gain cross over frequencies 

before defining gain margin and phase margin.  

 

Gain margin is the safety factor by which the open loop gain of a system can be increased before 

the system becomes unstable. It is measured as 

 

 

where ωp is the phase crossover frequency which is defined as the frequency where the phase of 

the loop transfer function  is 180°.  

 

Similarly, Phase margin (PM) is defined as 

 



 

where ωg is the gain crossover frequency which is defined as the frequency where the loop gain 

magnitude of the system becomes one. 

 

 Compensator design using Bode plot 

A compensator or controller is added to a system to improve its steady state as well as dynamic 

responses.  

 

Nyquist plot is difficult to modify after introducing controller.  

 

Instead Bode plot is used since two important design criteria, phase margin and gain crossover 

frequency are visible from the Bode plot along with gain margin.  

 

Points to remember 

 Low frequency asymptote of the magnitude curve is indicative of one of the error 

constants  depending on the system types. 

 Specifications on the transient response can be translated into phase margin (PM), gain 

margin (GM), gain crossover frequency, bandwidth etc. 

 Design using bode plot is simple and straight forward. 

 Reconstruction of Bode plot is not a difficult task. 

 Phase lesd, Phase lag and Lag-lead compensators 

Phase lead, phase lag and lag-lead compensators are widely used in frequency domain design.  

 

Before going into the details of the design procedure, we must remember the following. 

 Phase lead compensation is used to improve stability margins. It increases system 

bandwidth thus improving the spread of the response. 

 Phase lag compensation reduces the system gain at high frequencies with out reducing 

low frequency gain. Thus the total gain/low frequency gain can be increased which in 

turn will improve the steady state accuracy. High frequency noise can also be attenuated. 

But stability margin and bandwidth reduce. 

 Using a lag lead compensator, where a lag compensator is cascaded with a lead 

compensator, both steady state and transient responses can be improved. 

 Bi-linear transformation transfers the loop transfer function in z -plane to w -plane.  

 

Since qualitatively w -plane is similar to s -plane, design technique used in s -plane can 

be employed to design a controller in w -plane.  

 

Once the design is done in w -plane, controller in z -plane can be determined by using the 

inverse transformation from w -plane to z -plane.  

 

In the next two lectures we will discuss compensator design in s -plane and solve 

examples to design digital controllers using the same concept. 



 Compensator Design Using Bode Plot 

In this lecture we would revisit the continuous time design techniques using frequency domain 

since these can be directly applied to design for digital control system by transferring the loop 

transfer function in -plane to -plane. 

 Phase lead compensator 

If we look at the frequency response of a simple PD controller, it is evident that the magnitude of 

the compensator continuously grows with the increase in frequency.  

 

The above feature is undesirable because it amplifies high frequency noise that is typically 

present in any real system.  

 

In lead compensator, a first order pole is added to the denominator of the PD controller at 

frequencies well higher than the corner frequency of the PD controller.  

 

A typical lead compensator has the following transfer function. 

 where,  

 

 is the ratio between the pole zero break point (corner) frequencies.  

 

Magnitude of the lead compensator is . And the phase contributed by the 

lead compensator is given by 

 

 

Thus a significant amount of phase is still provided with much less amplitude at high 

frequencies.  

 

The frequency response of a typical lead compensator is shown in Figure 1 where the magnitude 

varies from  to  and maximum phase is always less than 90° (around 

60° in general). 

  



 

Figure 1: Frequency response of a lead compensator 

It can be shown that the frequency where the phase is maximum is given by 

 

 

The maximum phase corresponds to 

 

 

The magnitude of  

 

Example 1: Consider the following system 



 

 

Design a cascade lead compensator so that the phase margin (PM) is at least 45° and steady state 

error for a unit ramp input is ≤ 0.1 .  

 

The lead compensator is 

 where,  

 
 

Steady state error for unit ramp input is 

 

 
 

PM of the closed loop system should be 45°. Let the gain crossover frequency of the 

uncompensated system with K be ωg . 

 

 

Phase angle at ωg = 3.1 is -90 - tan -1 3.1 = - 162° . Thus the PM of the uncompensated system 

with K is 18°.  

 

If it was possible to add a phase without altering the magnitude, the additional phase lead 



required to maintain PM= 45° is 45° - 18° = 27° at ωg = 3.1 rad/sec.  

 

However, maintaining same low frequency gain and adding a compensator would increase the 

crossover frequency. As a result of this, the actual phase margin will deviate from the designed 

one. Thus it is safe to add a safety margin of ε to the required phase lead so that if it devaites 

also, still the phase requirement is met. In general ε is chosen between 5° to 15°.  

 

So the additional phase requirement is 27° + 10° = 37° , The lead part of the compensator will 

provide this additional phase at ωmax .  

 

Thus 

 

 

 

The only parameter left to be designed is τ. To find τ, one should locate the frequency at which 

the uncompensated system has a logarithmic magnitude of .  

 

Select this frequency as the new gain crossover frequency since the compensator provides a gain 

of  at ωmax. Thus 

 

 

In this case ωmax = ωg new = 4.41 . Thus 

 

 

The lead compensator is thus 

 



 

With this compensator actual phase margin of the system becomes 49.6° which meets the design 

criteria.  

 

The corresponding Bode plot is shown in Figure 2 

 

Figure 2: Bode plot of the compensated system for Example 1 

 

Example2:  

 

Now let us consider that the system as described in the previous example is subject to a sampled 

data control system with sampling time T = 0.2 sec. Thus 

 

 

 

 

The bi-linear transformation 
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will transfer  into w -plane, as 

 [please try the simplification] 

 

We need first design a phase lead compensator so that PM of the compensated system is at least 

50° with Kv = 2 . The compensator in w -plane is 

 

 

Design steps are as follows. 

 K has to be found out from the Kv requirement. 

Make ωmax = ωgnew. 

Compute the gain crossover frequency ωg and phase margin of the uncompensated system after 

introducing K in the system. At ωg check the additional/required phase lead, add safety margin, 

find out . Calculateα from the required  Since the lead part of the compensator 

provides a gain of , find out the frequency where the logarithmic magnitude 

is . This will be the new gain crossover frequency where the maximum phase 

lead should occur. Calculate τ from the relation  

Now, 

 

 

Using MATLAB command ``margin'', phase margin of the system with K = 2 is computed as 

31.6° with ωg = 1.26 rad/sec, as shown in Figure 3.  

http://nptel.ac.in/courses/108103008/module5/lec6/5.html#m5l6f3


 

Figure 3: Bode plot of the uncompensated system for Example 2 

Thus the required phase lead is 50° - 31.6° = 18.4° . After adding a safety margin of 11.6° 

, becomes 30° . Hence 

 

From the frequency response of the system it can be found out that at ω = 1.75 rad/sec, the 

magnitude of the system is . Thus ωmax = ωgnew = 1.75 rad/sec. This gives 

 

 

Or,  

 

Thus the controller in w-plane is 

 



The Bode plot of the compensated system is shown in Figure 4. 

 

Figure 4: Bode plot of the compensated system for Example 2 

Re-transforming the above controller into z -plane using the relation , we get the 

controller in z -plane, as 

 

 

 

 Lag Compensator Design 

In the previous lecture we discussed lead compensator design. In this lecture we would see how 

to design a phase lag compensator 

 Phase lag compensator 

The essential feature of a lag compensator is to provide an increased low frequency gain, thus 

decreasing the steady state error, without changing the transient response significantly.  

 

For frequency response design it is convenient to use the following transfer function of a lag 

compensator. 
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 where,  

 

The above expression is only the lag part of the compensator. The overall compensator is 

 

Typical objective of lag compensator design is to provide an additional gain of α in the low 

frequency region and to leave the system with sufficient phase margin.  

 

The frequency response of a lag compensator, with α=4 and τ=3, is shown in Figure 1 where the 

magnitude varies from  dB to 0 dB. 

 

Figure 1: Frequency response of a lag compensator 

 

Since the lag compensator provides the maximum lag near the two corner frequencies, to 

maintain the PM of the system, zero of the compensator should be chosen such that ω = 1/ τ is 

much lower than the gain crossover frequency of the uncompensated system. 



In general, τ is designed such that 1/ τ is at least one decade below the gain crossover frequency 

of the uncompensated system. Following example will be comprehensive to understand the 

design procedure.  

 

Example 1: Consider the following system 

 

 

Design a lag compensator so that the phase margin (PM) is at least 50° and steady state error to a 

unit step input is .  

 

The overall compensator is 

 where,  

 

When  

 

Steady state error for unit step input is 

 

 

Thus,  

 

Now let us modify the system transfer function by introducing K with the original system. Thus 

the modified system becomes 

 

 

PM of the closed loop system should be 50°. Let the gain crossover frequency of the 

uncompensated system with K be ωg . 



 

 

 

 

Required PM is 50°. Since the PM is achieved only by selecting K, it might be deviated from this 

value when the other parameters are also designed. Thus we put a safety margin of 5° to the PM 

which makes the required PM to be 55°. 

 

To make ωg = 2.8 rad/sec, the gain crossover frequency of the modified system, magnitude 

at ωgshould be 1. Thus 

 

Putting the value of ωg in the last equation, we get K = 5.1. Thus, 

 

The only parameter left to be designed is τ.  

 

Since the desired PM is already achieved with gain K, We should place ω = 1/ τ such that it does 

not much effect the PM of the modified system with K. If we place 1/ τ one decade below the 

gain crossover frequency, then 



 or,  

The overall compensator is 

 

With this compensator actual phase margin of the system becomes 52.7°, as shown in Figure 2, 

which meets the design criteria.  

 

Figure 2: Bode plot of the compensated system for Example 1 

Example2:  
 

Now let us consider that the system as described in the previous example is subject to a sampled 

data control system with sampling time T = 0.1 sec. We would use MATLAB to derive the plant 

transfer function w -plane.  

 

Use the below commands. 

>> s=tf('s'); 

>> gc=1/((s+1)*(0.5*s+1)); 

>> gz=c2d(gc,0.1,'zoh'); 

http://nptel.ac.in/courses/108103008/module5/lec7/3.html#m5l7f2


You would get  

 

   

The bi-linear transformation 

 

will transfer  into w-plane. Use the below commands 

>> aug=[0.1,1]; 

>> gwss = bilin(ss(gz),-1,'S_Tust',aug) 

>> gw=tf(gwss) 

to find out the transfer function in w-plane, as 

 

The Bode plot of the uncompensated system is shown in Figure 3. 

http://nptel.ac.in/courses/108103008/module5/lec7/4.html#m5l7f3


 

Figure 3: Bode plot of the uncompensated system for Example 2 

We need to design a phase lag compensator so that PM of the compensated system is at least 50° 

and steady state error to a unit step input is 0.1. The compensator in w -plane is 

 

where, 

 

 

Since , for 0.1 steady state error. 

Now let us modify the system transfer function by introducing K to the original system. Thus the 

modified system becomes 

 

 

PM of the closed loop system should be 50°. Let the gain crossover frequency of the 

uncompensated system with K be ωg . Then, 



 

 

 

 

Required PM is 50°. Let us put a safety margin of 5°. Thus the PM of the system modified 

with Kshould be 55°. 

 

 
 

By solving the above, ωg = 2.44 rad/sec. Thus the magnitude at ωg should be 1. 

 

Putting the value of ωg in the last equation, we get K = 4.13 .  

 

Thus, 

 

If we place 1/ τ one decade below the gain crossover frequency, then 

 or,  

Thus the controller in w -plane is 

 

Re-transforming the above controller into z -plane using the relation , we get 



 

The Bode plot of the compensated system is shown in Figure 4. 

 

Figure 4: Bode plot of the compensated system for Example 2 

 

 Lag -lead Compensator 

When a single lead or lag compensator cannot guarantee the specified design criteria, a lag-lead 

compensator is used.  

 

In lag-lead compensator the lag part precedes the lead part. A continuous time lag-lead 

compensator is given by 

 where,  

 

The corner frequencies are , , , . The frequency response is shown in Figure 

1. 
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Figure 1: Frequency response of a lag-lead compensator 

  

In a nutshell, 

If it is not specified which type of compensator has to be designed, one should first check the PM 

and BW of the uncompensated system with adjustable gain K. 

If the BW is smaller than the acceptable BW one may go for lead compensator. If the BW is 

large, lead compensator may not be useful since it provides high frequency amplification. 

One may go for a lag compensator when BW is large provided the open loop system is stable. 

If the lag compensator results in a too low BW (slow speed of response), a lag-lead compensator 

may be used. 

 

 Lag-lead compensator design 

Example 1 Consider the following system with transfer function 

  



 

 

Design a lag-lead compensator C(s) such that the phase margin of the compensated system is at 

least 45° at gain crossover frequency around 10 rad/sec and the velocity error constant Kv is 30.  

 

The lag-lead compensator is given by 

 where,  

 

When  

 

 

Thus K = 30 . Bode plot of the modified system KG(s) is shown in Figure 2. The gain crossover 

frequency and phase margin of KG(s) are found out to be 9.77 rad/sec and -17.2° respectively. 

  

 



Figure 2: Bode plot of the uncompensated system for Example 1 

Since the PM of the uncompensated system with K is negative, we need a lead compensator to 

compensate for the negative PM and achieve the desired phase margin.  

 

However, we know that introduction of a lead compensator will eventually increase the gain 

crossover frequency to maintain the low frequency gain.  

 

Thus the gain crossover frequency of the system cascaded with a lead compensator is likely to be 

much above the specified one, since the gain crossover frequency of the uncompensated system 

withK is already 9.77 rad/sec.  

 

Thus a lag-lead compensator is required to compensate for both.  

 

We design the lead part first.  

 

From Figure 2, it is seen that at 10 rad/sec the phase angle of the system is -198°. 

 

Since the new ωg should be 10 rad/sec, the required additional phase at ωg, to maintain the 

specified PM, is 45 - (180 - 198) = 63° . With safety margin 2°, 

 

 

And 

 

which gives . However, introducing this compensator will actually increase the gain 

crossover frequency where the phase characteristic will be different than the designed one. This 

can be seen from Figure 3. 



 

Figure 3: Frequency response of the system in Example 1 with only a lead compensator 

The gain crossover frequency is increased to 23.2 rad/sec. At 10 rad/sec, the phase angle is -134° 

and gain is 12.6 dB. To make this as the actual gain crossover frequency, lag part should provide 

an attenuation of -12.6 dB at high frequencies.  

 

At high frequencies the magnitude of the lag compensator part is . Thus , 

 

 

which gives . Now,  should be placed much below the new gain crossover 

frequency to retain the desired PM. Let  be 0.25. Thus 

 

 

The overall compensator is 



 

The frequency response of the system after introducing the above compensator is shown in 

Figure 4, which shows that the desired performance criteria are met. 

  

 

Figure 4: Frequency response of the system in Example 1 with a lag-lead compensator 

Example 2:  

 

Now let us consider that the system as described in the previous example is subject to a sampled 

data control system with sampling time  sec. We would use MATLAB to derive the 

plant transfer function -plane.  

 

Use the below commands. 

>> s=tf('s'); 

>> gc=1/(s*(1+0.1*s)*(1+0.2*s)); 

>> gz=c2d(gc,0.1,'zoh'); 

You would get  



 

      

 

 

The bi-linear transformation 

 
 

will transfer  into -plane. Use the below commands 

>> aug=[0.1,1]; 

>> gwss = bilin(ss(gz),-1,'S_Tust',aug) 

>> gw=tf(gwss) 

 

to find out the transfer function in -plane, as 

 

 

  

Since the velocity error constant criterion will produce the same controller dcgain , the gain 

of the lag-lead compensator is designed to be .  

 

The Bode plot of the uncompensated system with  is shown in Figure 5. 

http://nptel.ac.in/courses/108103008/module5/lec8/5.html#m5l8f5


 

Figure 5: Bode plot of the uncompensated system for Example 2 

From Figure 5, it is seen that at  rad/sec the phase angle of the system is .  

 

Thus a huge phase lead ( ) is required if we want to acieve a PM of  which is not 

possible with a single lead compensator. Let us lower the PM requirement to a minimum 

of  at  rad/sec.  

 

Since the new  should be  rad/sec, the required additional phase at , to maintain the 

specified PM, is . With safety margin , 

 
And 

 

which gives . However, introducing this compensator will actually increase the gain 

crossover frequency where the phase characteristic will be different than the designed one. This 

can be seen from Figure 6. 

http://nptel.ac.in/courses/108103008/module5/lec8/5.html#m5l8f5
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Figure 6: Frequency response of the system in Example 2 with only a lead compensator 

Also, as seen from Figure 6, the GM of the system is negative. Thus we need a lag compensator 

to lower the magnitude at  rad/sec. 

At  rad/sec, the magnitude is  dB. To make this as the actual gain crossover frequency, 

lag part should provide an attenuation of  dB at high frequencies.  

 

Thus, 

 

 

which gives . Now,  should be placed much below the new gain crossover 

frequency to retain the desired PM. Let  be . Thus 

 

The overall compensator is 

http://nptel.ac.in/courses/108103008/module5/lec8/5.html#m5l8f6


 

The frequency response of the system after introducing the above compensator is shown in 

Figure 7, which shows that the desired performance criteria are met.  

 

Figure 7: Frequency response of the system in Example 2 with a lag-lead compensator 

  

 

Re-converting the controller in z-domain, we get 

 

 

 

 Design based on root locus method 

The effect of system gain and/or sampling period on the absolute and relative stability of the 

closed loop system should be investigated in addition to the transient response characteristics. 

Root locus method is very useful in this regard. 

http://nptel.ac.in/courses/108103008/module5/lec8/6.html#m5l8f7


The root locus method for continuous time systems can be extended to discrete time systems 

without much modifications since the characteristic equation of a discrete control system is of 

the same form as that of a continuous time control system. 

In many LTI discrete time control systems, the characteristics equation may have either of the 

following two forms. 

 

 

 

0  

 

 

0  

 

To combine both, let us define the characteristics equation as: 

  

 

  (1) 

 

where,  or .  is popularly known as the loop 

pulse transfer function. From equation (1), we can write 

 

Since  is a complex quantity it can be split into two equations by equating angles and 

magnitudes of two sides. This gives us the angle and magnitude criteria as 

Angle Criterion:  

Magnitude Criterion:  

The values of z that satisfy both criteria are the roots of the characteristics equation or close loop 

poles. Before constructing the root locus, the characteristics equation  should be 

rearranged in the following form  

 

   



 

 

where 's and 's are zeros and poles of open loop transfer function, m is the number of 

zeros nis the number of poles. 

 Construction Rules for Root Locus 

Root locus construction rules for digital systems are same as that of continuous time systems. 

1. The root locus is symmetric about real axis. Number of root locus branches equals the number 

of open loop poles. 

2. The root locus branches start from the open loop poles at K = 0 and ends at open loop zeros 

at K = ∞. In absence of open loop zeros, the locus tends to ∞ when K → ∞. Number of branches 

that tend to ∞ is equal to difference between the number of poles and number of zeros. 

3. A portion of the real axis will be a part of the root locus if the number of poles plus number of 

zeros to the right of that portion is odd. 

4. If there are n open loop poles and m open loop zeros then n - m root locus branches tend 

to ∞ along the straight line asymptotes drawn from a single point s = σ which is called centroid 

of the loci. 

Angle of asymptotes  

5. Breakaway (Break in) points or the points of multiple roots are the solution of the following 

equation: 

 

where K is expressed as a function of z from the characteristic equation. This is a necessary but 

not sufficient condition. One has to check if the solutions lie on the root locus. 

6. The intersection (if any) of the root locus with the imaginary axis can be determined from the 

Routh array. 

7. The angle of departure from a complex open loop pole is given by 

 

where  is the net angle contribution of all other open loop poles and zeros to that pole. 



 

's are the angles contributed by zeros and 's are the angles contributed by the poles. 

8. The angle of arrival at a complex zero is given by 

 

where  is same as in the above rule. 

9. The gain at any point  on the root locus is given by 

 

 Root locus diagram of digital control systems 

We will first investigate the effect of controller gain K and sampling time T on the relative 

stability of the closed loop system as shown in Figure 1.  

 

Figure 1: A discrete time control system 

 

 

Let us first take T=0.5 sec. 



 

Let us assume that the controller is an integral controller, i.e., . Thus, 

 

The characteristic equation can be written as  

  

 has poles at z = 1 and z = 0.605 and zero at z = 0.  

Break away/ break in points are calculated by putting . 

 

 



Critical value of K can be found out from the magnitude criterion. 

 

 

 

Critical gain corresponds to point . Thus 

 

 

 

Figure 2 shows the root locus of the system for K = 0 to K =10. Two root locus branches start 

from two open loop poles at K = 0. If we further increase K one branch will go towards the zero 

and the other one will tend to infinity. The blue circle represents the unit circle. Thus the stable 

range of K is0 < K < 8.165. 

 

Figure 2: Root Locus when T=0.5 sec 

 

If T = 1 sec,  



 

   

 

Break away/ break in points:  

 and  Critical gain  Figure 3 

shows the root locus for K = 0 to K = 10. It can be seen from the figure that the3 radius of the 

inside circle reduces and the maximum value of stable K also decreases to K = 4.328 . 

  

 

Figure 3: Root Locus when T=1 sec 

 

Similarly if T = 2 sec,  

 

   

 

One can find that the critical gain in this case further reduces to 2.626. 

 Effect of sampling period T 

As can be seen from the previous example, large T has detrimental effect on relative stability. A 

thumb rule is to sample eight to ten times during a cycle of the damped sinusoidal oscillation of 

the output if it is underdamped. If overdamped, 8/10 times during rise time.  



 

As seen from the example making the sampling period smaller allows the critical gain to be 

larger, i.e., maximum allowable gain can be made larger by increasing sampling frequency /rate.  

 

It seems from the example that damping ratio decreases with the decrease in T. But one should 

take a note that damping ratio of the closed loop poles of a digital control system indicates the 

relative stability only if the sampling frequency is sufficiently high (8 to 10 times). If it is not the 

case, prediction of overshoot from the damping ratio will be erroneous and in practice the 

overshoot will be much higher than the predicted one.  

 

Next, we may investigate the effect of T on the steady state error. Let us take a fixed gain K = 2.  

 

When T = 0.5 sec. and K = 2,  

 

   

 

Since this is a second order system, velocity error constant will be a non zero finite quantity. 

 

Thus,  

When T = 1 sec. and K = 2 

 

 

   

 

 

 

When T = 2 sec. and K = 2 



 

   

 

 

 

Thus, increasing sampling period (decreasing sampling frequency) has an adverse effect on the 

steady state error as well. 

 Design by using Root Locus 

 Controller types: We have already studied different variants of controllers such as PI, 

PD, PID etc. We know that PI controller is generally used to improve steady state 

performance whereas PD controller is used to improve the relative stability or transient 

response. Similarly a phase lead compensator improves the dynamic performance 

whereas a lag compensator improves the steady state response.  

 

 Pole-Zero cancellation A common practice in designing controllers in s-plane or z-plane 

is to cancel the undesired poles or zeros of plant transfer function by the zeros and poles 

of controller. New poles and zeros can also be added in some advantageous locations. 

However, one has to keep in mind that pole-zero cancellation scheme does not always 

provide satisfactory solution. Moreover, if the undesired poles are near  axis, inexact 

cancellation, which is almost inevitable in practice, may lead to a marginally stable or 

even unstable closed loop system. For this reason one should never try to cancel an 

unstable pole.  

 Design Procedure: Consider a compensator of the form . It will be a lead 

compensator if the zero lies on the right of the pole. 

1. Calculate the desired closed loop pole pairs based on design criteria. 

2. Map the s-domain poles to z-domain. 

3. Check if the sampling frequency is 8 - 10 times the desired damped frequency of oscillation. 

4. Calculate the angle contributions of all open loop poles and zeros to the desired closed loop 

pole. 

5. Compute the required contribution by the controller transfer function to satisfy angle criterion. 



6. Place the controller zero in a suitable location and calculate the required angle contribution of 

the controller pole. 

7. Compute the location of the controller pole to provide the required angle. 

8. Find out the gain K from the magnitude criterion. 

The following example will illustrate the design procedure. 

 

 

 An Example on Controller Design  

 

Consider the closed loop discrete control system as shown in Figure 1 . 

Figure 1: A discrete time control system 

 

  

Design a digital controller such that the dominant closed loop poles have a damping 

ratio and settling time  sec for  tolerance band. Take the sampling period 

as T = 0.2 sec. The dominant pole pair in continuous domain 

is  where  is the natural undamped frequency. 

 

Since , we get approximately 9 samples per cycle of the damped oscillation.  

The closed loop poles in s-plane 

file:///E:/NPTEL%20all%20files/NPTEL-PHASE-II/Electrical/Digital%20controll%20system/source/module5/m5_lec2/m5_lec2.html%23fig:m5l2f1


 

 

 

Thus the closed loop poles in z-plane 

 

  

 

Figure 2: Root locus of uncompensated system 

The root locus of the uncompensated system (without controller) is shown in Figure 2. It is clear 

from the root locus plot that the uncompensated system is stable for a very small range of K. 

  



 

Figure 3: Pole zero map to compute angle contributions 

Pole zero map of the uncompensated system is shown in Figure 3. Sum of angle contributions at 

the desired pole is , where  is the angle by the zero, , 

and  and are the angles contributed by the two poles, 0.82 and 1 respectively.  

 

From the pole zero map as shown in Figure 3, the angles can be calculated 

as ,  and .  

 

Net angle contribution is . But from angle 

criterion a point will lie on root locus if the total angle contribution at that point is . 

Angle deficiency is  

 

Controller pulse transfer function must provide an angle of 66.5°. Thus we need a Lead 

Compensator. Let us consider the following compensator.  

 

   



 

If we place controller zero at z = 0.82 to cancel the pole there, we can avoid some of the 

calculations involved in the design. Then the controller pole should provide an angle 

of .  

 

Once we know the required angle contribution of the controller pole, we can easily calculate the 

pole location as follows.  

 

The pole location is already assumed at . Since the required angle is greater 

than  we can easily say that the pole must lie on the right half of 

the unit circle. Thus b should be negative. To satisfy angle criterion, 

 

 

 

The controller is then written as . The root locus of the compensated 

system (with controller) is shown in Figure 4. 

  



 

Figure 4: Root locus of the compensated system 

If we compare Figure 4 with Figure 2, it is evident that stable region of K is much larger for the 

compensated system than the uncompensated system. Next we need to calculate K from the 

magnitude criterion. 

 

 

Thus the required controller is . The SIMULINK block to compute 

the output response is shown in Figure 5. All discrete blocks in the SIMULINK model should 

have same sampling period which is 0.2 sec in this example.  



 

Figure 5: Simulink diagram of the closed loop system 

  

Unit – VI 

State Feedback Controllers 

UNIT SYLLABUS 

Design of state feedback controller through pole placement – Necessary and sufficient conditions 
– Ackerman’s formula. 

 

4.1.1. Unit Objectives: 

After reading this Unit, you should be able to understand: 

 To study the design of state feedback control by “the pole placement method.”  
 

4.1.2. Unit Outcomes: 

 The learner understand the stability of digital control systems and how to make the unstable 

system to stable. The leaner will understand about designing of systems by conventional 

methods like root locus and bode plot through bilinear transformation.  

The design techniques described in the preceding lectures are based on the transfer 

function of a system. In this lecture we would discuss the state variable methods of designing 

controllers. The advantageous of state variable method will be apparent when we design 

controllers for multi input multi output systems. Moreover, transfer function methods are 

applicable only for linear time invariant and initially relaxed systems. 



 State Feedback Controller 

Consider the state-space model of a SISO system 

 

(1) 

where , u(k) and y(k) are scalar. In state feedback design, the states are fedback to 

the input side to place the closed poles at desired locations. 

 

Regulation Problem: When we want the states to approach zero starting from any arbitrary initial 

state, the design problem is known as regulation where the internal stability of the system, with 

desired transients, is achieved. Control input: 

 

(2) 

 

 

Tracking Problem: When the output has to track a reference signal, the design problem is known 

as tracking problem. Control input: 

 

 

where r(k) is the reference signal. 

 

First we will discuss designing a state feedback control law using pole placement technique for 

regulation problem.  

 

By substituting the control law (2) in the system state model (1), the closed loop system 

becomes . If K can be designed such that eigenvalues of A-

BK are within the unit circle then the problem of regulation will be solved. 

 

The control problem can thus be defined as: Design a state feedback gain matrix K such that the 

control law given by equation (2) places poles of the closed loop 

system  in desired locations. 

A necessary and sufficient condition for arbitrary pole placement is that the pair (A,B) must be 

controllable. Since the states are feedback to the input side, we assume that all the states are 

measurable. 



 

 Designing K by transforming the state model into controllable from 

(pole placement technique) 

The problem is first solved for the controllable canonical form. Let us denote the controllability 

matrix by UC and consider a transformation matrix T as 

 

where  

's are the coefficients of the characteristic polynomial 

.  

 

Define a new state vector . This will transform the system given by (1) into 

controllable canonical form, as 

 

(3) 

 

You should verify that 

 

 

We first find  such that  places poles in desired locations. Since 



eigenvalues remain unaffected under similarity transformation,  will 

also place the poles of the original system in desired locations.  

 

If poles are placed at , the desired characteristic equation can be expressed as: 

 

(4) 

 

Since the pair  are in controllable-companion form then, we have 

 

Please note that the characteristic equation of both original and canonical form is expressed 

as: = = = 0.  

 

The characteristic equation of the closed loop system with  is given as: 

 

(5) 

Comparing Eqs. (4) and (5), we get 

 

(6) 

 

We need to compute the transformation matrix T to find the actual gain matrix 

 where . 



 Designing K by Axkermann's Formula 

Consider the state-space model of a SISO system given by equation (1). The control input is 

 

(7) 

Thus the closed loop system will be 

 

(8) 

 

Desired characteristic Equation: 

 

 

 

Using Cayley-Hamilton Theorem  



 

where  is the closed loop characteristic polynomial and UC is the controllability matrix. 

Since UCis nonsingular 

 
 

Extending the above for any n, 

 where  



The above equation is popularly known as Ackermann's formula 

Example 1: Find out the state feedback gain matrix K for the following system using two 

different methods such that the closed loop poles are located at 0.5 , 0.6 and 0.7. 

 

Solution: 

 

The above matrix has rank 3, so the system is controllable.  

 

Open loop characteristic equation:  

or,  

   

 

Desired characteristic equation: 

 

 

Since the open loop system is already in controllable canonical form, T =1. 

 

where,  and . Thus 

 

Using Ackermann's formula: 



 

Thus 

 

 

Example 2: Find out the state feedback gain matrix K for the following system by converting the 

system into controllable canonical form such that the closed loop poles are located at 0.5 and 0.6. 

 

Solution: 

 



The above matrix has rank 2, so the system is controllable.  

 

Open loop characteristic equation: 

or,  

   

 

Desired characteristic equation: 

 

 

To convert into controllable canonical form:  

The transformation matrix:  

Check:  

Now,  

Thus  

We can then write  

 

For all examples and exercise problems the system is considered as 

……………………………………………………………..……State 

Equation 



……………………………………………………………………...Output 

Equation 

  

 

Examples 

Example: 1 Given that ,  

Design a state feedback controller such that the closed loop poles are located at z=0.4 & z=0.6 

Solution: 

The block diagram is given by 

 

From the adjoining block diagram we have 

 

The characteristic equation of the poles located at 0.4 and 0.6 is 

 

From the standard characteristic equation of closed loop poles, we have 

 



 

 

On comparison with standard equation, we get 

 

 

 

 

k= [-0.24 1.24] 

These values of the system gain represent the two controller parameters which are feedback to 

reference input. Finally the matrix form of the state feedback gain of the controller is given 

above respectfully. 

Example 3: Given that 

 



Determine the state feedback gain by using Ackermann's Formula. 

Solution: 

 

Here the order (n) of F matrix is n=2 

c = [G FG] 

 

 

 

  

From the characteristic equation we get 

 

Substitute z = F we have 

 

 

 

 

By Ackermann's formula state feedback gain is given by 

 



k = [0 1]  

k = [-1 1]  

k = [-0.24 1.24] 

Problem 1: Given that 

,  

Design a state feedback controller such that the closed loop poles are located at z = 0.6 ± 0.4 j . 

Problem 2: The F and G matrices are given below 

 

Design a state feedback controller using the transformation matrix that transforms the system 

into controllable canonical form in such a way that closed loop poles are located at z = 0.2 & z 

= 0.8. 

Problem 3: Following F and G matrices of order 2 are given by 

 

Determine the state feedback gain by using Ackermann's Formula. 
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IV B.Tech II Semester Regular Examinations, September - 2020 

DIGITAL CONTROL SYSTEMS 
 (Electrical and Electronics Engineering) 

Time: 3 hours         Max. Marks: 70 

Question paper consists of Part-A and Part-B 

Answer ALL sub questions from Part-A 

Answer any FOUR questions from Part-B 

***** 

PART–A (14 Marks) 

1. a) What is meant by impulse sampler? [2] 

b) What is the z-transform of sin 𝜔𝑡? [2] 

c) Explain the concept of controllability. [2] 

d) Write comment on the stability of 𝐹 𝑧 = 𝑧2 − 0.25 = 0  by using Jury’s

stability criterion? [3] 

e) List out the transient response specifications. [2] 

f) Write statement on necessary condition for design of state feedback controller

through pole placement? [3] 

PART–B (4x14 = 56 Marks) 

2. a) List out the applications where DCS are used? Explain any one of them in detail. [7]

b) Explain the frequency domain characteristics of zero order hold with neat

schematic. [7] 

3. a) The input-output of a sampled data system is described by the difference

equation 𝑦 𝑘 + 2 + 3𝑦 𝑘 + 1 + 4𝑦 𝑘 = 𝑟 𝑘 + 1 − 𝑟(𝑘); 𝑦 0 = 𝑦 1 = 0 

𝑟 0 = 0, Determine pulse transfer function. Also obtain the unit pulse response 

of the system. [7] 

b) Find the inverse z-transform of 𝐹 𝑧 =
𝑧(𝑧+1)

 𝑧−1 (𝑧2−𝑧+1)
 by using partial fraction 

expansion method. [7] 

4. a) Obtain the inverse of the matrix  𝑍𝐼 − 𝐺   𝑤ℎ𝑒𝑟𝑒 𝐺 =  
0.1 0.1 0
0.3 −0.1 −0.2
0 0 −0.3

  also 

obtain 𝐺𝑘 . [7] 

b) Consider the following system
𝑦(𝑧)

𝑢(𝑧)
=

𝑧 + 1

𝑧2 + 1.3𝑧 + 0.4
Obtain (i) Controllable canonical form (ii) Observable canonical form (iii) 

Diagonal form. [7] 

5. a) Draw the Jury’s table, write its necessary and sufficient conditions. [7] 

b) Consider the following characteristic equation

𝐹 𝑧 = 𝑧3 − 1.3𝑧2 − 0.08𝑧 + 0.24 = 0, Determine whether or not any of the

roots of the characteristic equation lie outside the unit circle in the z-plane. Use

modified Routh’s stability criterion. [7] 
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6. a) Write design procedure in the w-plane. [7] 

 b) A unity feedback system is characterized by the open loop transfer function 

𝐺ℎ0𝐺 𝑧 =
0.2385(𝑧 + 0.8760)

 𝑧 − 1 (𝑧 − 0.2644)
 

The sampling period T=0.2 sec, Determine steady state errors for following  

(i) Unit Step (ii) Unit ramp (iii) Unit Parabolic. 

 

 

 

 

[7] 

    

7. a) Derive the Ackermann’s formula for state feedback gain matrix. [4] 

 b) Consider the system 

𝑋 𝑘 + 1 = 𝐺𝑋 𝑘 + 𝐻𝑢(𝑘) 

𝐺 =  
0 1 0
0 0 1

−0.12 −0.01 1
 ; 𝐻 =  

0
0
1
  

Determine a suitable state feedback gain matrix ‘K’ such that the system will 

have the closed loop poles at 0.3, 0.4, 0.6. 

 

 

 

 

 

 

[10] 
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Time: 3 hours                Max. Marks: 70 

Question paper consists of Part-A and Part-B 

Answer ALL sub questions from Part-A 

Answer any FOUR questions from Part-B 

***** 

  PART–A (14 Marks)  

1. a) Write a statement of sampling theorem. [2] 

 b) What is the z-transform of 𝑡𝑒−𝑎𝑡 ? [2] 

 c) Explain the concept of observability. [2] 

 d) Write about the primary strips and complementary strips with neat schematic. [2] 

 e) Derive an expression for steady state error for step input.  [3] 

 f) Write statement on sufficient condition for design of state feedback controller 

through pole placement. 

 

[3] 

    

  PART–B (4x14 = 56 Marks)  

2. a) Derive the transfer function of zero order hold.  [7] 

 b) Explain the block diagram representation of the sample and hold devices. [7] 

    

3.  For the sampled data system as shown in figure.3 given below, find (i) Pulse 

transfer function 
𝑌(𝑧)

𝑅(𝑧)
   (ii) Output 𝑦 𝑘  𝑓𝑜𝑟 𝑟 𝑡 = 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 (𝑡 = 1 𝑠𝑒𝑐). 

 
Figure.3 

 

 

 

 

 

 

 

 

 

[14] 

    

4. a) Consider the following system 
𝑦(𝑧)

𝑢(𝑧)
=

𝑧+1

𝑧2+𝑧+0.16
, Obtain (i) Controllable 

canonical form (ii) Observable canonical form (iii) Diagonal form. 

 

 

[7] 

 b) Consider the following pulse transfer function system 

𝑦(𝑧)

𝑢(𝑧)
=

𝑧−1(1 + 0.8𝑧−1)

1 + 1.3𝑧−1 + 0.4𝑧−2
 

Test the state controllability and observability. 

 

 

 

[7] 

    

5. a) Consider the following characteristic equation 𝑧3 + 2.1𝑧2 + 1.44𝑧 + 0.32 = 0, 

Determine whether or not any of the roots of the characteristic equation lie 

outside the unit circle centered at the origin of the z-plane. 

 

 

[7] 

 b) Determine the stability of the following discrete time system  

𝑦(𝑧)

𝑥(𝑧)
=

𝑧−3

1 + 0.5𝑧−1 − 1.34𝑧−2 + 0.24𝑧−3
 

 

 

[7] 
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6. a) Write about the general rules for constructing Root Loci. [7] 

 b) The feed forward pulse transfer function is given  

𝐺 𝑧 =
𝐾𝑧(1 − 𝑒−𝑇)

 𝑧 − 1 (𝑧 − 𝑒−𝑇)
 

Investigate the effect of the sampling period T on the steady state accuracy of 

the unit ramp response for the following (i) T=0.5 Sec, K=2 (ii) T=1 Sec, K=2 

(iii) T=2 Sec, K=2. Write comment on the above cases. 

 

 

 

 

 

[7] 

    

7. a) Derive necessary condition for the design of state feedback controller through 

pole placement. 

 

[7] 

 b) A regulator system has the plant 

𝑋 𝑘 + 1 =  
0 1

−0.16 −1
 𝑋 𝑘 +  

0
1
 𝑢 

Design a full order state observer, the desired eigen values of the observer 

matrix are -1.8-j2.4, -1.8+j2.4. 

 

 

 

 

[7] 
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  PART–A (14 Marks)  

1. a) Write the DCS example of a digital computer controlled rolling mill regulating 

system. 

 

[3] 

 b) What is the z-transform of cos 𝜔𝑡? [2] 

 c) Write the diagonal canonical form. [2] 

 d) Investigate the mapping from s-plane to z-plane of the constant frequency loci 

with neat sketch. 

 

[2] 

 e) Derive an expression for steady state error for ramp input. [3] 

 f) What is the purpose of an observer? [2] 

    

  PART–B (4x14 = 56 Marks)  

2. a) List out the merits of digital systems. [4] 

 b) State and explain sampling theorem with neat sketch. [10] 

    

3. a) Solve the difference equation  

𝑦 𝑘 + 2 + 3𝑦 𝑘 + 1 + 2𝑦 𝑘 = 𝑟 𝑘 ; 
𝑟 𝑘 = 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝, 𝑦 0 = 1 𝑎𝑛𝑑 𝑦 1 = 0 

 

 

[7] 

 b) Obtain the inverse z-transform of 𝑥 𝑧 =
𝑧−2

(1−𝑧−1)3  

[7] 

    

4. a) What are the various methods of evaluation of state transition matrix? Explain 

any one method. 

 

[7] 

 b) Obtain the state equation and output equation for the system defined by  

𝑦(𝑧)

𝑢(𝑧)
=

𝑧−1 + 5𝑧−2

1 + 4𝑧−1 + 3𝑧−2
 

 

 

[7] 

    

5. a) Write about the modified Routh’s stability criterion. [7] 

 b) Consider the system described by 

 𝑦 𝑘 − 0.6𝑦 𝑘 − 1 − 0.81𝑦 𝑘 − 2 + 0.67𝑦 𝑘 − 3 − 0.12𝑦 𝑘 − 4 = 𝑥(𝑘) 
Where x(k) is the input and y(k) is the output of the system. Determine the 

stability of the system by using Jury’s stability criterion. 

 

 

 

[7] 
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6.  Consider the system as shown in figure.6. Assume that the digital controller is of 

the integral type. 

 

Figure.6 

Draw root locus diagram for the system of the sampling period T=0.5. Also 

determine the critical value of K for T=0.5. Locate the closed loop poles 

corresponding to K=2 for T=0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] 

    

7. a) Derive sufficient condition for the design of state feedback controller through pole 

placement. 

 

[4] 

 b) Consider the system is given by 

𝑋 𝑘 + 1 =  
0 1 0
0 0 1

−1 −2 −3
  𝑘 +  

0
0
1
 𝑢(𝑘)  

Determine a suitable state feedback gain matrix ‘K’ to place the eigen values at  

0.5, 0.6, 0.7. 

 

 

 

 

 

[10] 
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  PART–A (14 Marks)  

1. a)  Enumerate advantages of digital systems. [2] 

 b) Define z-transform and write z transform of unit step function. [2] 

 c) Write the Jordan canonical form. [2] 

 d) Write comment on the stability of P  𝑧 = 𝑧2 − 0.25 = 0  by using modified 

Routh’s stability criterion. 

 

[3] 

 e) Derive an expression for steady state error for parabolic input. [3] 

 f) What is reduced order observer? [2] 

    

  PART–B (4x14 = 56 Marks)  

2.  Draw and explain the configuration of the basic digital control systems with neat 

block diagram.   

 

[14] 

    

3. a) State and explain the initial value and final value theorem. [7] 

 b) Using the inversion integral method, obtain the inverse z-transform of 𝑥 𝑧 =
10

 𝑧−1 (𝑧−2)
; for k=0,1,2,3…….. 

 

 

[7] 

    

4. a) Obtain the state and output equation of discretization of continuous time state 

equation.  

 

[7] 

 b) Obtain the state transition matrix of the following discrete time system 

𝑥 𝑘 + 1 = 𝐺𝑥 𝑘 + 𝐻𝑢(𝑘) 

𝑦 𝑘 = 𝐶𝑥(𝑘) 
Where 

𝐺 =  
0 1

−0.16 −1
 , 𝐻 =  

1
1
 , 𝐶 =  1 0  

 

 

 

 

 

[7] 

    

5. a) Investigate the mapping between the s-plane and the z-plane with neat schematic. [7] 

 b) Consider the discrete time unity feedback control system (T=1 sec) whose open 

loop pulse transfer function is given by 𝐺 𝑧 =
𝐾(0.3679𝑧+0.2642)

 𝑧−0.3679 (𝑧−1)
. Determine the 

range of K for stability by use of the Jury’s stability test. 

 

 

 

[7] 
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6.  Consider the digital control system shown in figure.6. Design a digital controller 

in the w-plane such that the phase margin is 50
0
, the gain margin is at least 10 dB, 

and the static velocity error constant Kv is 2 sce
-1

. Assume that the sampling 

period is 0.2 sec. 

 

 
Figure.6 

 

    

7. a) Explain the full order observer with neat block diagram and also write its error 

dynamics of the full order state observer.  

 

[7] 

 b) Consider the system is given by 

𝑋 𝑘 + 1 =  
0 1

−1 −2
 𝑋 𝑘 +  

0
1
 𝑢(𝑘)  

Obtain the state feedback gains ‘K’ to place the eigen values at 0.1, 0.2 using 

Ackermann’’s formula. 

 

 

 

 

[7] 
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  PART–A (22 Marks)  

1. a) Briefly explain the basic components of a digital control system. [4] 

 b) What is shifting theorem of z-transforms? [3] 

 c) What are the advantages of state space approach compared to conventional 

approach in system analysis? 

 

[4] 

 d) What are Primary strips and Complementary Strips? [4] 

 e) Explain the need for compensation in digital control systems. [3] 

 f) What is pole placement by state feedback?  [4] 

    

  PART–B (3x16 = 48 Marks)  

2. a) Explain the merits and demerits of digital control systems compared to analog 

control systems.         

 

[8] 

 b) Derive the transfer function of zero order hold device. [8] 

    

3. a) 
Obtain the pulse transfer function of the system       

      

 
 

 

      
 . 

 

[8] 

 b) Find the inverse Z-Transform of the following:  

         
   

           
          (ii)      

  

            
 .   

 

 

[8] 

    

4. a) Obtain the state transition matrix of the following discrete time systems 
                   

         
  

       
     

 
 
  

 

 

 

[8] 

 b) Consider the following pulse transfer function system: 

    

    
 

             

               
 

Test the state controllability and observability.  

 

 

 

[8] 

    

5. a) Determine the stability of the following characteristic equation by using suitable 

tests. z
4
−1.7z

3
+1.04z

2
−0.268z + 0.024 = 0. 

 

[8] 

 b) With an example explain the stability analysis using Modified routh’s stability 

criterion. 

 

[8] 

    

6. a) The characteristics equation of a discrete time system is   
         

           
=0, Draw 

the root locus for T=0.5 sec.   

 

 

[8] 

 b) Explain the transient response specifications with reference to unit step response 

of discrete time response. 

 

[8] 
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7. a) Consider the following system 
                   

         
  

       
     

 
 
  

Determine a state feedback controller K to place the closed loop poles at 

z=0.5±j0.5. 

 

 

 

 

[8] 

 b) What is the necessary and sufficient condition for arbitrary pole-placement? 

Prove the sufficiency of the condition. 

 

[8] 
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  PART–A (22 Marks)  

1. a) What are the disadvantages of digital control systems over analog systems?      [4] 

 b) 
Find the inverse Z-transform of  

  

      
   

 

[3] 

 c) What are the properties of State transition matrix?  [4] 

 d) Distinguish between Routh’s criterion and Modified Routh’s stability criterion. [4] 

 e) List out the steady state specifications. [3] 

 f) How is state feedback controller useful for pole placement? [4] 

    

  PART–B (3x16 = 48 Marks)  

2. a) Describe any two examples of digital control system. [8] 

 b) Explain the Frequency domain characteristics of zero order hold. [8] 

    

3. a) State and explain the following theorems of z-transforms: 

(i) Initial value theorem                (ii) Final Value theorem 

 

[8] 

 b) The pulse transfer function of digital control systems is given by  

     
  

       
 

Find the complete solution to a unit step input and assume that, the initial 

conditions are zero. 

 

 

 

 

[8] 

    

4. a) Consider the system defined by 

 
       
       

   
  
  

  
     
     

   
 
 
      

           
     
     

  

Determine the conditions on a,b,c and d for complete state controllability and 

complete observability.  

 

 

 

 

 

 

[8] 

 b) Obtain the state transition matrix of the following discrete time system: 

                   
             

Where 

    
  

    
     

 
 
         

 

 

 

 

[8] 

5. a) Explain the mapping between S-plane and Z-plane. [8] 

 b) Write down the rules in Jury stability criterion. [8] 
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6. a) Explain the design procedure for Lag –Lead compensator in ω-plane. [8] 

 b) Explain the angle and magnitude conditions for the characteristic equation 

1+G(z)H(z)=0 for drawing root locus. 

 

[8] 

    

7. a) Derive ‘Ackerman’s formula’ for pole placement. [8] 

 b) Consider the following system 
                   

         
    
  

     
    
   

  

Determine a state feedback controller K to place the closed loop poles at 

z=0.6±j0.4. 

 

 

 

 

[8] 
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  PART–A (22 Marks)  

1. a) Write down the advantages of digital control systems over analog systems.      [4] 

 b) Obtain the z-transform of         [3] 

 c) Explain the concept of observability. [4] 

 d) Write the mapping points between S-Plane and Z-plane. [4] 

 e) Write the general form of transfer functions for (i) Lead compensator and (ii) 

Lag compensator. 

 

[3] 

 f) Draw the block diagram of a closed loop discrete time system that uses state 

feedback controller for pole placement. 

 

[4] 

    

  PART–B (3x16 = 48 Marks)  

2. a) Draw and explain the general block diagram of discrete data control system.  [8] 

 b) Explain how a zero order hold helps in data reconstruction. [8] 

    

3. a) Using z-transforms solve the equation given below 

                                                                            

 

[8] 

 b) Explain the procedure for obtaining the pulse transfer function of a closed loop 

transfer function.  

 

[8] 

    

4. a) What is state transition matrix? What are its properties? [6] 

 b) Given the following state model of the system 

        
   
   

      
       

  
  

   
      

      
    
   

      

Obtain the state transition matrix. 

 

 

 

 

 

[10] 

    

5. a) Examine the stability of the following characteristic equation using jury 

stability analysis. P(Z)=Z
4
-1.2Z

3
+0.07Z

2
+0.3Z-0.08 = 0 

 

[8] 

 b) Explain stability analysis using bilinear transformation and Routh stability 

criterion. 

 

[8] 
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6. a) Explain the design procedure in the ω - plane of lead compensator. [8] 

 b) A block diagram of a digital control system is shown in figure, Draw the root 

locus for sampling period T=0.4 sec. 

 

 

 

 

 

 

Figure  

 

 

 

 

 

 

 

 

[8] 

    

7. a) State and prove the necessary condition for arbitrary pole-placement? [8] 

 b) Consider the following system 
                   

         
    
  

     
    
   

  

Determine a state feedback controller K to place the closed loop poles at 

z=0.4±j0.6. 

 

 

 

 

[8] 
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  PART–A (22 Marks)  

1. a) What is sampling theorem? What is its importance? [4] 

 b) State initial and final value theorems. [4] 

 c) Explain the concept of controllability.  [3] 

 d) Explain the mapping between S-plane and Z-plane. [4] 

 e) Write the expressions for static position error constant and steady state error in 

response to a unit step input in discrete time systems. 

 

[4] 

 f) Explain ‘Ackerman’s formula’ for pole placement. [3] 

    

  PART–B (3x16 = 48 Marks)  

2. a) Explain in detail the process of sampling and reconstruction of signals.  [8] 

 b) Draw the schematic diagram of basic discrete data control system and explain the 

same. 

 

[8] 

    

3. a) Find inverse z –transform of (i) 
 

      
   (ii) 

 

       
   

[8] 

 b) Explain the procedure for obtaining the pulse transfer function of open loop 

transfer function. 

 

[8] 

    

4. a) Derive an expression to find the state transition matrix of a discrete system. [8] 

 b) Obtain the discrete time state and output equations of the following continuous 

time system.                 where    
  
   

     
 
 
 ;        

 

 

[8] 

    

5. a)  Explain the  mapping procedure for  the following from s-plane to z-plane  

(i) The constant damping loci  (ii) The constant frequency loci 

 

[8] 

 b) Use the Routh-Hurwitz criterion to find the stable range of K for the closed loop 

unity feedback system with loop gain 
)8.0)(1.0(

)1(
)(






zz

zK
zF . 

 

 

[8] 

    

6.  Consider the digital control system shown in figure, where the plant transfer 

function is 
 

  . Design a digital controller in the w-plane such that the phase 

margin is 50
0
 and the gain margin is atleast 10 dB. The sampling period is 0.1 

sec. 

 

 

 

 

 

 

Figure 

 

 

 

 

 

 

 

 

 

 

[16] 
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7. a) Explain the step by step procedure of pole placement by state feedback in 

discrete systems. 

 

[8] 

 b) Consider the following system 
                   

         
    
  

     
    
   

  

Determine a state feedback controller K to place the closed loop poles at 

z=0.3±j0.3. 

 

 

 

 

[8] 
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